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ABSTRACT. This paper presents the numerical solution of a com-
bustion model with thermal conductivity and reactant diffusivity in
arbitrary domains using the Variational Iteration Method (VIM).
The paper begins with a brief introduction of the model and the ba-
sic idea of VIM. This is followed by the numerical solutions of the
model and animated graphical representation of the solutions. The
result obtained demonstrates that the model is highly sensitive to
initial conditions, and its applicability is dependent on thermal con-
ductivity and reactant diffusivity values. Computations are carried
out using Maple 18 software.

1. INTRODUCTION

We consider the following strongly coupled quasilinear parabolic com-
bustion model with thermal conductivity and reactant diffusivity in non-
smooth domains presented by Sanni [1] of the form:

∂u
∂ t

−div(φ∇u) = Qw f (u), in Ω× [0,∞) (1)

∂w
∂ t

−div(Ψ∇w) = w f (u), in Ω× [0,∞) (2)

∂u
∂n

=
∂w
∂n

= 0 on ∂Ω× [0,∞) (3)
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u(x,0) = u0(x),w(x,0) = w0(x) (4)

Where
φ = h1(x, t,u,w),Ψ = h2(x, t,u,w) (5)

Here Qw f (u) and −w f (u) are the reaction Kinetics determined by a
positive, uniformly bounded, differentiable Lipschitz continuous func-
tion f (u). f ′(u) is also assumed to be Lipschitz continuous.

The system (1)-(4) represents a one-step irreversible reaction, reactant→
product. w(x, t) is assumed to be the mass fraction of the reactant, 1−
w(x, t), the mass fraction of the product, u(x, t) the temperature in the
reaction vessel, φ(x, t,u,w) the thermal conductivity, and Ψ(x, t,u,w)
the reactant diffusivity [1].

We remark that combustion modeling indeed has a rich history in math-
ematical research. However, as stated by Buckmaster [2], making use-
ful contribution to combustion requires an extensive apprenticeship in
the relevant physics. The work of Buckmaster et al. [3] and the refer-
ences therein provides much on the fundamentals of combustion. In-
terestingly, equations derived for combustion processes may find use-
fulness in other areas. One fascinating example of such an equation
is the Kuramoto-Sivashinsky Equation (KSE). Originally proposed by
Kuramoto [4] and independently by Sivashinsky [5] to model flame
front instability and phase turbulence in chemical reactions, the KSE
has found applications in reaction-diffusion systems, flame propagation,
thin hydrodynamic films, and viscous flow problems [6], [7]. Whether
or not the system (1) – (4) finds usefulness in other areas besides com-
bustion will be subject of other studies.

The existence of a unique, global and strong solution to the system
(1)-(4) was proven in [1]. Fitzgibbon and Martin [8], presented an ex-
tensive discussion of the quasilinear parabolic combustion model and
solutions to variants of (1)-(4) using the Forward-Euler Finite differ-
ence scheme. In this study, we apply He’s [9], [10] Variational Iteration
Method (VIM) to finding the numerical solution to the system (1)-(4).
The basic idea of the method is summarized below:

Consider the following nonlinear differential equation:

Lu+Nu = g(x) (6)

Where L is a linear operator, N is a nonlinear operator and g(x) is a
known function. VIM presents a correction functional for equation (6)
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in the form:

un+1(x) = un(x)+
∫ x

0
λ (s)(Lun(s)+N

∼
un(s)−g(s))ds (7)

Where λ (s) is a general Lagrange’s multiplier, which may be a con-
stant or a function, and may be identified optimally via variational the-
ory [11],[12]. The subscript n denotes the nth approximation, and

∼
unis

considered a restricted variation i.e. ∂
∼
un = 0. The langrage multiplier

λ (s) in (7) is accurately determined using calculus of variation and vari-
ational theories. Accurate or approximate Lagrange multiplier for the
scheme may also be determined using the formula:

λ (s) =
(−1)n

(n−1)!
(s− x)n−1 (8)

Upon the determination of the Lagrange multiplier λ (s), we determine
the iteration formula as:

un+1(x) = un(x)+
(−1)n

(n−1)!

∫ x

0
(s−x)(n−1)(Lun(s)+N

∼
un(s)−g(s))ds

(9)
A preferred zeroth approximation is selected, and other iterations fol-
low. Several studies [13], [14], [15] [16] have shown that VIM is able
to solve systems of linear and non-linear partial differential equations.

2. . NUMERICAL APPLICATION

PROBLEM 1
To solve (1)-(4), we re-write (1) and (2) in the form:

∂u
∂ t

−
(

φ
∂ 2u
∂x2 +

∂u
∂x

∂φ

∂x

)
= w f (u) (10)

∂w
∂ t

−
(

Ψ
∂ 2w
∂x2 +

∂w
∂x

∂φ

∂x

)
=−w f (u) (11)

And assume the following initial conditions,

u(x,0) = tanh(3x2 + x),w(x,0) = tanh(3x+5) (12)

The thermal conductivity, and reactant diffusivity are assumed to be
of the respective forms:

φ = u(x, t)e(2x3+4x2+x)−w(x, t),Ψ = u(x, t)αe(x
2+x)−w(x, t) (13)

f (u) = βeu
λ > 0,α > 0,β > 0 (14)
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Furthermore, we shall solve the problem for

β = λ = α = 1 (15)

We assume that time t is measure in seconds and the reactant and
byproduct are assigned appropriate measurement in grams or Kilogram
as the case maybe.
Solution
To solve the model (10)-(14), we construct two correction functionals
of the form:

un+1(x, t) = un(x, t)+
∫ x

0
λ1(s)

(
∂u(x,s)

∂ s

−
(

φ
∂ 2u(x,s)

∂x2 +
∂u(x,s)

∂x
∂φ

∂x

)
−w(x, t) f (u(x,s))

)
ds

(16)

wn+1(x, t) = wn(x, t)+
∫ x

0
λ2(s)

(
∂w(x,s)

∂ s
−
(

Ψ
∂ 2w(x,s)

∂x2

+
∂w(x,s)

∂x
∂φ

∂x

)
+w(x, t) f (u(x,s))

)
ds

(17)

We determine λ1(s) = λ2(s) =−1 (18)

So that we get the following iteration formula:

un+1(x, t)= un(x, t)−
∫ x

0

(
∂u(x,s)

∂ s
−
(

φ
∂ 2u(x,s)

∂x2 +
∂u(x,s)

∂x
∂φ

∂x

)
−w(x, t) f (u(x,s))

)
ds

(19)

wn+1(x, t)=wn(x, t)−
∫ x

0

(
∂w(x,s)

∂ s
−
(

Ψ
∂ 2w(x,s)

∂x2 +
∂w(x,s)

∂x
∂φ

∂x

)
+w(x, t) f (u(x,s))

)
ds

(20)
We determine the zeroth (initial) approximation as:

u0(x, t) = u(x,0) = tanh(3x2 + x),w0(x, t) = w(x,0) = tanh(3x+5)
(21)
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Using the iteration formulas (19) and (20) and the zeroth approxima-
tions (21), we determine the following iterations:

u1(x, t) = tanh(3x2 + x)+
(

tanh(3x2 + x)e2x3+4x2+x − tanh(3x+5)
)

(
−2tanh(3x2 + x)

(
1− tanh(3x2 + x)2

)
(6x+1)2 +6−6tanh(3x2 + x)2

)
t

+

(
1− tanh(3x2 + x)2

)
(6x+1)

((
1− tanh(3x2 + x)2

)
(6x+1)e2x3+4x2+x

+ tanh(3x2 + x)(6x2 +8x+1)e2x3+4x2+x −3+3tanh(3x+5)2
)

t

− tanh(3x+5)etanh(3x2+x)t

(22)

w1(x, t) = tanh(3x+5)−6
(

tanh(3x2 + x)ex2+x − tanh(3x+5)
)

tanh(3x+5)
(

3−3tanh(3x+5)2
)

t +
(

3−3tanh(3x+5)2
)

((
1− tanh(3x2 + x)2

)
(6x+1)e2x3+4x2+x + tanh(3x2 + x)(6x2 +8x+1)

e2x3+4x2+x −3+3tanh(3x+5)2
)

t + tanh(3x+5)etanh(3x2+x)t

(23)

· · · and so on.
We plot the result of the temperature u1(x, t) in the reaction vessel in
Fig. 1-4 below:
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Fig. 1-4: Depicting rising temperature u(x, t) as time t progresses



NUMERICAL SOLUTION OF A COMBUSTION MODEL... 61

PROBLEM 2

We repeat the process for the problem (10) - (15), using the following
initial approximation:

u0(x, t) = u(x,0) = tanh(3x2 −2x),w0(x, t) = w(x,0) = tanh(3x+10)
(24)

The thermal conductivity and reactant diffusivity are assumed to be of
the respective forms:

φ = u(x, t)e(2x3+4x2+x)−w(x, t),Ψ = u(x, t)αe(x
2+x)−w(x, t) (25)

Solution

u1(x, t) = tanh(3x2 −2x)+
(

tanh(3x2 −2x)e2x3+4x2+x − tanh(3x+10)
)

(
−2tanh(3x2 −2x)

(
1− tanh(3x2 −2x)2

)
(6x−2)2 +6−6tanh(3x2 −2x)2

)
t

+

(
1− tanh(3x2 −2x)2

)
(6x−2)

((
1− tanh(3x2 −2x)2

)
(6x−2)e2x3+4x2+x + tanh(3x2 −2x)(6x2 +8x+1)e2x3+4x2+x

−3+3tanh(3x+10)2
)

t − tanh(3x+10)etanh(3x2−2x)t

(26)

w1(x, t) = tanh(3x+10)−6
(

tanh(3x2 −2x)ex2+x − tanh(3x+10)
)

tanh(3x+1)(
3−3tanh(3x+10)2

)
t +

(
3−3tanh(3x+10)2

)((
1− tanh(3x2 −2x)2

)
(6x−2)e2x3+4x2+x + tanh(3x2 −2x)(6x2 +8x+1)e2x3+4x2+x −3

+3tanh(3x+10)2
)

t + tanh(3x+10)etanh(3x2−2x)t

(27)

· · · and so on.
We plot the result of the temperature u1(x, t) in the reaction vessel in
Fig. 5-8 below
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Fig. 5-8: Depicting rising temperature u(x, t) over time t

The solutions u(x, t), graphically illustrated in Fig 1- 4 for problem 1
and Fig. 5 – 8 for problem 2 depicts rising temperature of a combustion
process over a period of time t. The ignition temperature for the com-
bustion process is at time t = 0. We observe a steady rise of the flame
like profiles of u(x, t) as time t progresses for both problems considered.
We note also that a small change to the initial conditions for problem
2, resulted in a change in height and a slight shift to the right of u(x, t),
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despite using the same thermal conductivity and reactant diffusivity val-
ues for both problems. This indicates that the model is highly sensitive
to initial conditions.

3. CONCLUSION

In this study, the Variational Iteration Method have been applied to find-
ing the numerical solutions of the combustion model (1)-(5) using care-
fully chosen Zeroth approximation, thermal conductivity and reactant
diffusivity in arbitrary domain with the results graphically illustrated
and interpreted. It was demonstrated that VIM is able to give a straight
forward handling of the model once the zeroth approximation, reactant
diffusivity and thermal conductivity had been appropriately chosen in
arbitrary domain. Choosing values for the zeroth approximation, reac-
tant diffusivity and thermal conductivity in arbitrary domain to get inter-
pretable results for the model can however be quite tricky and requires
proper understanding of the fundamentals of the model. We remark
that the model is able to yield a good number of interpretable numeri-
cal solutions depending on appropriately chosen zeroth approximation,
thermal conductivity and reactant diffusivity.
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