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CHEBYSHEV HYBRID MULTISTEP METHOD FOR

DIRECTLY SOLVING SECOND-ORDER INITIAL

AND BOUNDARY VALUE PROBLEMS

B. T. OLABODE AND A. L. MOMOH1

ABSTRACT. A numerical method had been proposed in this
work for directly solving second-order initial and boundary value
problems in ordinary differential equations. The approach of
collocation of a derivative function at equidistant grid and off-
grid points x = xn+ i

3
, i = 0, 1, · · · , k, where k is the step number

in the interval [xn, xn+k] was adopted. The derived Chebyshev
Hybrid Multistep Method (CHMM) is of order (2k + 3). The
continuous scheme was evaluated at different off-step points to
obtain multiple hybrid schemes of uniform order which were
solved simultaneously for dense approximations that make its
computation competitive. Some numerical examples were given
to demonstrate the accuracy and efficiency advantages of the
proposed method.
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1. INTRODUCTION

The study of numerous physical phenomena in sciences and engi-
neering often lead to second-order ordinary differential equations of
the type

y′′ = f(x, y, y′), (1)

subject to the following initial conditions

y(a) = η0, y
′(a) = η1 (2)

or boundary conditions

y(a) = yN , y(b) = yN1, (3)
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where f ∈ R is continuous and satisfies Lipschitz condition, ∂f
∂y

is

continuous and non-negative, ∀ x ∈ {a, b} and ∀ y, then there ex-
ists a unique solution to the problem (1) ([2, 21, 39]). There exists
an extensive literature on numerical methods for solving ordinary
differential equations ODEs (see [1]-[5]). Among these methods,
one-step and linear multistep methods are often adopted for the
numerical integration of ODEs which are either implemented in
predictor-corrector (see e.g. [2]-[6]) or block ([7]-[12]) modes and
their stability domain are carefully studied. Backward Difference
Formulae (BDF) are the first numerical methods to be proposed
for stiff differential equations. [3] reported that LMMs, generally
are more efficient in terms of accuracy though with weak stabil-
ity properties for a given number of evaluations per step, suffered
the disadvantage of requiring additional starting values and special
procedures for changing step-length. Stomer-Cowell methods which
are a subclass of LMMs with step number greater than two exhibit
phenomenon which [13] termed as orbital instability. [14] proposed
alternative methods which require prior knowledge of the frequen-
cies of the periodic problem. Dahlquist [15] barrier theorem, which
has been generalized by [1] has greatly influenced the development
of LMMs for second-order in particular.
The main characteristic of all the methods developed in the lit-

erature for the numerical solution of (1) is that they belong to the
class of multistep and hybrid techniques. Emphasis is now on hy-
brid methods because of their high order and the p-stability charac-
teristic [14]. Hybrid methods have the advantage of incorporating
function evaluation at off-step points which affords the opportu-
nity of circumventing the Dahquist [15] barrier. The first analysis
of instability phenomena and step size restrictions for hyperbolic
equations was made in [16], later, many authors undertook a sta-
bility analysis very often independently. The size of the stability
region of a numerical method is especially important in the choice of
methods suitable for solving stiff system. Indeed, for the numerical
solution of stiff systems, it requires an interval of stability region
to be as large as possible to avoid restricted step size implemen-
tation during numerical integration [17]. In order to increase the
stability of linear multistep methods, off step points are included
and according to [1], the main ingredient for these methods is the
adoption of Chebyshev polynomials as the basis function.
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This work presented an efficient and accurate numerical method
for directly solving initial and boundary value problems in ordi-
nary differential equations. The derived CHMM handled effectively
classical problems in physics such as Troesch’s [33]-[31] and Bratu’s
[22]-[31] problems and singular problem such as Michaelis-Menten
Oxygen diffusion [37].

Theorem 1:(Chebyshev equi-oscillation theorem [18]) Let f be a
continuous function on a finite and closed interval [a, b] and let
Tn(x) be a polynomial with the oscillation

L = max
a≤x≤b

|f(x)− Tn(x)|, (4)

then, Tn(x) is the best approximating polynomial to f(x) on
the interval [a, b] if and only if there exist at least n + 2 points
a ≤ x0 < x1 < ... < xn+1 ≤ b such that

| f(xi)− Tn(xi) |= L, i = 0, 1, ..., n+ 1, (5)

f(xi)− Tn(xi) = −[f(xi+1)− Tn(xi+1)] for i=0, 1,...,n. (6)

The points xi = 0, 1, ..., n + 1 which satisfy the above conditions
(5) and (6) are the knots.

Proof. The proof of the necessary and sufficient conditions for Tn(x)
to be the best Chebyshev approximating polynomial to function
f(x) is the same as that given in [18]. �

The paper has been arranged in five sections. Section 2 deals with
the mathematical formulation and the development of the scheme,
section 3, the computational aspects of the scheme, section 4 with
convergence and stability analysis and finally, section 5 numerical
experiments and results.

2. MATHEMATICAL FORMULATION

The objective is to construct a two-step continuous formulation
with four intermediate points within interval [0, 2]. To achieve this,
the following conditions are imposed:

y(xn+ j
3
) = yn+ j

3
, j = 0, 1 (7)

y′′(xn+ j
3
) = f((xn+ j

3
), y(xn+ j

3
), y′(xn+ j

3
)) j = 0, 1, · · · , 3k,(8)

where k is the step number. It is assumed that the theoretical
solution of (1) denoted by y(xn+j) is approximated by a polynomial



100 B. T. OLABODE AND A. L. MOMOH

of the type

ȳ(xn+j) � y(xn+j) =

(r+s)−1∑
j=0

ajTj(x) (9)

where aj’s are the coefficients to be determined, r and s are the
numbers of distinct interpolation and collocation points. The terms
Tj(x) are Chebyshev polynomials of the first kind which can be
obtained by means of Rodrigues’s formula [19]

Tj(x) =
(−2)jj!

(2j)!

√
1− x2

dj

dxj
(1− x2)j−

1
2 j = 0, 1, 2, 3, · · · (10)

. We interpolate (9) at x = xn+ j
3
, j = 0, 1 and collocate its second-

derivative at x = xn+ j
3
, j = 0, 1, · · · , 3k respectively. These and

conditions (7) and (8) lead to a system of (r + s) equations and
(r + s) unknown coefficients to be determined. Solving for the
unknown parameters and substituting into equation (7), after some
simplification gives the continuous scheme of the form:

y(ψ) = (1− 3ψ) yn + 3ψyn+ 1
3
+ h2

((
81

4480
ψ8

−441

320
ψ5 − 27

160
ψ7 − 49

40
ψ3 +

203

120
ψ4 +

1

2
ψ2 − 28549

362880
ψ +

21

32
ψ6

)
fn

+

(
−10621

90720
ψ − 81

224
ψ8 +

10

3
ψ3 +

81

28
ψ7 − 127

12
ψ4 +

279

20
ψ5 − 363

40
ψ6

)
fn+1

+

(
81

4480
ψ8 − 1

12
ψ3 − 27

224
ψ7 +

137

480
ψ4 − 27

64
ψ5 +

199

72576
ψ +

51

160
ψ6

)
fn+2

+

(
− 243

2240
ψ8 − 261

40
ψ4 +

27

28
ψ7 − 279

80
ψ6 + 3ψ3 +

261

40
ψ5 − 275

1728
ψ

)
fn+ 1

3

+

(
5717

40320
ψ +

243

896
ψ8 − 4149

320
ψ5 − 513

224
ψ7 +

351

32
ψ4 +

1233

160
ψ6 − 15

4
ψ3

)
fn+ 2

3

+

(
−2763

320
ψ5 +

7703

120960
ψ +

963

160
ψ6 +

99

16
ψ4 − 459

224
ψ7 − 15

8
ψ3 +

243

896
ψ8

)
fn+ 4

3

+

(
− 243

2240
ψ8 − 81

40
ψ4 +

117

40
ψ5 +

3

5
ψ3 − 171

80
ψ6 − 403

20160
+

27

35
ψ7

)
fn+ 5

3

)
, (11)

noting that ψ =
x− xn+1

h
, that is x = ζ h + h. The main discrete

scheme is obtained by evaluating (11) at ψ = 2 which gives

yn+2 − 6 yn+ 1
3
+ 5 yn =

h2

36288

(
1375 fn + 15004 fn+1 + 199 fn+2

+19554 fn+ 1
3
+ 13401 fn+ 2

3
+ 6177 fn+ 4

3
+ 4770 fn+ 5

3

)
(12)

The scheme (12) is consistent, zero-stable and of order p = 7
with error constant cp+2 = 349

595213920
. The local truncation error is
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obtained by assuming that E(x) is a sufficiently differentiable func-
tion, the linear difference operators associated with the formulas in
(12) can be written in the form

L j
3
[E(x); h] ≡ E(x+

j

3
h)−

[
α0 + α i

3
E(x+

1

3
h)

+h2
6∑

m=0

βm(
i

3
)E(2)(x+

j

3
h)

]
, (13)

where j = 1, 2, · · · , 6. Taking E(x) as the true solution of the
problem in (1), after expanding (13) in Taylor series about x yields
the truncation errors of the form

L j
2
[y(x); h] = cj0y(x) + cj1hy

′(x) + · · ·+ cjrh
ry(r)(x) +O

(
h(r+1)

)
(14)

where cjr are constants. It is worthy to note that the first p + 1
constants will be equal to zero, which means that

cj0 = cj1 = cj2 = · · · = cjp+1 = 0, and cjp+2 �= 0,

this implies that

L j
3
[y(x); h] = cjp+2h

p+2yp+2(x) +O
(
hp+3

)
where p and cjp+2 are respectively known as the order and local
principal error constant of the corresponding formula. The principal
local truncation error of the main formulas in (12) is obtained to
be:

L j
3
[y(x); h] =

349

595213920
h9y9(x) +O

(
h10

)
.

Method (12) is said to be consistent if it has order at least one. If
the first and second characteristic polynomial is defined such that

ρ(d) =

k∑
j=0

αjd
j, σ(d) =

k∑
j=0

βjd
j,

it is easily verified that method (12) is consistent if and only if
ρ(1) = ρ′(1), ρ′′(1) = 2σ(1). For the zero-stability, the following
definition is pertinent.

Definition 1: (See [4, 21]) The CHMM (12) is said to be zero-
stable if no root of the first characteristic polynomial ρ(d) has
modulus greater than one, and if every root of modulus one has
multiplicity not greater than two.
The roots of the first characteristic polynomial of (12) has modulus
one (1), whose multiplicity is one. This implies that the method is
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zero-stable. Noting that, dψ
dx

= 1
h
, we obtain the following additional

methods from (11)

yn+ 5
3
− 5 yn+ 1

3
+ 4 yn = h2

(
1669
54432fn + 3751

13608fn+1 − 95
54432fn+2

+ 3875
9072fn+ 1

3
+ 5069

18144fn+ 2
3
+ 1457

18144fn+ 4
3
+ 179

9072fn+ 5
3

)
,

yn+ 4
3
− 4 yn+ 1

3
+ 3 yn = h2

(
2089
90720fn + 3457

22680fn+1 − 19
18144fn+2

+ 4813
15120fn+ 1

3
+ 5461

30240fn+ 2
3
− 419

30240fn+ 4
3
+ 109

15120fn+ 5
3

)
,

yn+1 − 3 yn+ 1
3
+ 2 yn = h2

(
2803

181440fn + 1777
45360fn+1 − 137

181440fn+2

+ 1265
6048fn+ 1

3
+ 1657

20160fn+ 2
3
− 1049

60480fn+ 4
3
+ 11

2016fn+ 5
3

)
,

yn+ 2
3
− 2 yn+ 1

3
+ yn = h2

(
863

108864fn + 1987
136080fn+1 − 221

544320fn+2

+ 8999
90720fn+ 1

3
− 769

181440fn+ 2
3
− 1609

181440fn+ 4
3
+ 263

90720fn+ 5
3

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

The first derivative of (11) is obtained and evaluated at x = xn+i,
i = 0, 2, · · · , k to produce more additional schemes.

3. COMPUTATIONAL ASPECTS OF THE PROPOSED METHOD

The main scheme (12), the additional schemes (15) and a derivative
scheme obtained at xn are combined to give a single matrix of finite
difference equations which are solved simultaneously in block form:

A1Ym+1 = A0Ym + hA2Ym+2 + hμ[DF (Ym) +BF (Ym+1)] (16)

where

Ym+1 = (yn+ 1
3
, yn+ 2

3
, yn+1, yn+ 4

3
, yn+ 5

3
, yn+2)

T ,

Ym = (yn− 1
3
, yn− 2

3
, yn−1, yn− 4

3
, yn− 5

3
, yn)

T ,

Ym+2 = (y′
n− 1

3
, y′
n− 2

3
, y′n−1, y

′
n− 4

3
, y′
n− 5

3
, y′n)

T ,

F (Ym) = (fn− 5
3
, fn− 4

3
, fn−1, fn− 2

3
, fn− 1

3
, fn)

T ,

F (Ym+1) = (fn+ 1
3
, fn+ 2

3
, fn+1, fn+ 4

3
, fn+ 5

3
, fn+2)

T

A1 identity matrix, μ is the order of the differential equation A0,
A2, D and B are defined as follows:
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A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
3

0 0 0 0 0 2
3

0 0 0 0 0 1

0 0 0 0 0 4
3

0 0 0 0 0 5
3

0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 28549
1088640

0 0 0 0 0 1027
17010

0 0 0 0 0 253
2688

0 0 0 0 0 1088
8505

0 0 0 0 0 35225
217728

0 0 0 0 0 41
210

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

275
5184

− 5717
120960

10621
272160

− 7703
362880

403
60480

− 199
217728

194
945

− 8
81

788
8505

− 97
1890

46
2835

− 19
8505

165
448

− 267
4480

5
32

− 363
4480

57
2240

− 47
13440

1504
2835

− 8
945

2624
8505

− 8
81

32
945

− 8
1701

8375
12096

3125
72576

25625
54432

− 625
24192

275
5184

− 1375
217728

6
7

3
35

68
105

3
70

6
35

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The schemes that made up the block are of uniform order
(7, 7, 7, 7, 7, 7)T with error constant

cp+2 =

(
1

382725
,

1625

714256704
,

496

279006525
,

1

765450
,

233

279006525
,

6031

17856417600

)T

.

5. CONVERGENCE AND STABILITY ANALYSIS

Definition 2: (Convergence [20]) Suppose the initial values y0, y1
, ..., yp of equation (1) subject to (2) and (3) satisfy

η(h) ≡ max
0≤i≤p

|Y (xi)− yh(xn)| → 0 as h→ 0

Then the solution {yn} is said to converge to Y (x) if

max
x0≤xn≤b

|Y (xn)− yh(xn)| → 0 as h→ 0
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If CHMM is convergent for all problems of type (1), then it is called
a convergent numerical method.

Definition 3: (Stability domain[1]) The set

R =

{
λ ∈ C; all roots of ρj(λ) of the characteristic equation CHMM satisfies |ρj(λ)| ≤ 1

multiple roots satisfy |ρj(λ)| < 1

}

is called the stability domain or zero-stability. We have A-stability
if R ⊃ C−.
The zero-stability is concerned with the stability of the difference
system

A1Ym+1 − A0Ym (17)

whose first characteristic polynomial ρ(λ) is given by

ρ(λ) = det[λA1 −A0] = λ5(λ− 1) = 0. (18)

From (18), ρ(λ) = 0 satisfies |λj| ≤ 1, j = 1, ..., k and for those
roots with |λj| = 1, the multiplicity does not exceed 2. Therefore
block method (16) is zero-stable, also consistent, as it has the order
p greater than 1. Hence the convergence of the method is asserted
as in [21].

Definition 4: (p-stable [3]) Method is p-stable if its interval of
periodicity is (0,∞).
Stability Analysis: According to [11], the linear stability of block
method can be investigated by applying the method to the test
equation y′′ = λy . This leads to a recursion of the form:

Yn+2 =M(z)Yn,

M(z) := [I − zD]−1[A+ zB], z := λh

M is called the amplification matrix and its eigenvalues the ampli-
fication factors. By requiring the elements of the diagonal matrix
D to be positive, the matrix I − zD is nonsingular for all z on the
negative real axis. Therefore, in the sequel, we assume that the
(diagonal) elements of D are positive. We shall use the result on
the power of a matrix as

||Nn|| = o(nq−1[ρ(N)]n) as n→ ∞
where ||.|| and ρ(N) are the spectra norm and the radius of N and
where all diagonal sub-matrices of the Jordan normal form of N
which have spectral radius ρ(N) are at most q × q. If the spectra
radius ρ(N) < 1, then N is called power bounded. The region
where the amplification matrixM(z) is power bounded is called the
stability region of the block method. If the stability region contains
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the origin, then the method is called zero-stable (see definition 3).
We obtained the stability polynomial as:

ρ =

η (200 η z6 + 8253 η z5 + 10 z6 + 44856 η z4 − 252 z5 − 949725 η z3 − 42021 z4

+ 43936830 η z2 + 6307875 z3 − 1350253800 η z − 236830230 z2 + 20832487200

η − 9065989800 z − 20832487200)

200 z6 + 8253 z5 + 44856 z4 − 949725 z3 + 43936830 z2 − 1350253800 z + 20832487200

The stability domain of the methods is as shown in the figure
below.

−30 −25 −20 −15 −10 −5 0
−8

−6

−4

−2

0

2

4

6

8

Reg(z)

Im
(z

)

Region of absolute stability of one step method

Fig. 1. Stability domain of proposed numerical integrator

4. NUMERICAL EXPERIMENTS AND RESULTS

In this section, six numerical examples are presented.

Problem 1: The first numerical example considered is the nearly
periodic Stiefel and Bettis initial value problem

y′′ + y =
1

1000
eix, y(0) = 1, y′(0) = 0.9995i
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which has also appeared in [3] and [22]. The equivalent form of the
problem are

y′′1 + y1 =
1

1000
cos(x), y1(0) = 1, y′1(0) = 0

y′′2 + y2 =
1

1000
sin(x), y2(0) = 1, y′2(0) = 0.9995, x ∈ [0, π],

y(x) = y1(x) + iy2(x); y1, y2 ∈ R, D(x) =
√
y21(x) + y22(x).

The theoretical solutions are y1(x) = cos(x) +
1

2000
xsin(x) and

y2(x) = sin(x)− 1

2000
xcos(x). The differential system in the prob-

lem represents motion on a perturbed circular orbit in complex
plane in which the point y(x) spirals slowly outward such that its
distance from the origin at any given time t isD(x). The exact solu-
tion of D(x) = 1.001972. The derived CHMM is applied on Stiefel
and Bettis problem 1, in the interval which corresponds to 20 or-
bits of the point y(x) and the integration was done with uniform
grid sizes. As shown on Table 2, CHMM compared favourably with
[3] and [22], as all solution values generated by the CHMM spiral
outward while it was reported in [3] that the solutions generated
with the Stomer-Cowell five-step scheme: spiral inward revealing
its orbital instability.

Problem 2: The two body problem given as

y′′1 =
−y1
r
, y1(0) = 1, y′1(0) = 0,

y′′2 =
−y2
r
, y2(0) = 0, y′2(0) = 1

r =
√
y21 + y22, x ∈ [0, 15π], h = 0.1.

which has theoretical solutions y1(x) = cos(x), and y2(x) = sin(x).
The results are shown in Table 3.

Problem 3: The nonlinear perturbed system on the range [0, 10],
with ε = 10−3.

y′′1 + 25y1 + ε(y21 + y22) = εϕ1, y1(0) = 1 y′1(0) = 0,

y′′2 + 25y2 + ε(y21 + y22) = εϕ2, y2(0) = ε y′2(0) = 5,

where,

ϕ1 = 1 + ε2 + 2sin(5x+ x2) + 2cos(x2) + (25− 4x2)sin(x2),

ϕ2 = 1 + ε2 + 2sin(5x+ x2)− 2sin(x2) + (25− 4x2)cos(x2).
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Table 1. Results for problem 1, h = 1
320

x ∗ 10−2 y1-exact y1-computed Error in y1
0.625 0.99998048834470104 0.999980488344701 4.98E-18
0.937 0.99995609895403291 0.999956098954033 3.34E-18
1.250 0.99992195414021281 0.999921954140213 9.96E-18
1.563 0.99987805423635216 0.999878054236352 1.65E-18
1.875 0.99982439967073145 0.999824399670731 1.49E-17
2.187 0.99976099096679615 0.999760990966796 6.63E-18
2.500 0.99968782874315152 0.999687828743152 1.99E-17
2.812 0.99960491371355663 0.999604913713557 1.16E-17
3.215 0.99951224668691738 0.999512246686917 2.49E-17

x ∗ 10−2 y2-exact y2-computed Error in y2
0.625 0.00624683437101026 0.0062468343710103 1.90E-20
0.937 0.00937017537749408 0.0093701753774941 2.43E-20
1.250 0.01249342496998468 0.0124934249699847 1.10E-19
1.563 0.01561655267853829 0.0156165526785383 2.10E-20
1.875 0.01873952803440018 0.0187395280344002 2.44E-19
2.187 0.02186232057030199 0.0218623205703020 1.27E-19
2.500 0.02498489982075888 0.0249848998207589 4.49E-19
2.812 0.02810723532236683 0.0281072353223668 2.96E-19
3.215 0.03122929661409975 0.0312292966140998 7.16E-19

Table 2. Results for problem 1

h [3] [21] CHMM Stomer-Cowell
π
4

1.003067 1.002084 1.003145 0.965645
π
5

1.002217 1.002117 1.002312 0.993734
π
6

1.002047 1.002064 1.002048 0.999596
π
9

1.001978 1.001984 1.001982 0.001829
π
12

1.001973 1.001974 1.001971 0.001953

The theoretical solution are given as y1(x) = cos(5x) + ε sin(x2)
and y2(x) = sin(5x) + ε cos(x2). The problem is solved within the
interval [0, 1] for 100 iterations. The results are as presented on
Table 4.

Problem 4: The classical nonlinear Bratu’s boundary value prob-
lem in one-dimensional planar coordinates is given as

−y′′(x) = λey, 0 < x < 1
y(0) = y(1) = 0.

}
. (19)
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Table 3. Results for different values of h for prob-
lem 2.

h = 0.1 h = 0.05 h = 0.0025
x y1 y2 y1 y2 y1 y2
0.2 2.27(-16) 2.59(-15) 8.80(-19) 1.01(-17) 2.2(-19) 2.0(-21)
0.4 8.89(-16) 4.98(-15) 3.44(-17) 1.94(-17) 4.4(-19) 1.0(-20)
0.6 1.93(-15) 6.99(-15) 7.51(-18) 2.73(-17) 6.1(-19) 1.0(-20
0.8 3.28(-15) 8.48(-15) 1.27(-17) 3.31(-17) 7.6(-19) 1.0(-20)
1.0 4.80(-15) 9.30(-15) 1.87(-17) 3.63(-17) 9.2(-19) 1.0(-20)

Table 4. Results for problem 3, h = 0.01

x-value y1-exact y1-computed Error in y1
0.01 0.99500416527802576 0.9950041652780258 1.16E-16
0.02 0.98006657784124163 0.9800665778412418 2.27E-16
0.03 0.95533648912560601 0.9553364891256065 5.62E-16
0.04 0.92106099400288508 0.9210609940028859 8.89E-16
0.05 0.87758256189037271 0.8775825618903741 1.42E-15
0.06 0.82533561490967829 0.8253356149096802 1.93E-15
0.07 0.76484218728448842 0.7648421872844910 2.62E-15
0.08 0.69670670934716542 0.6967067093471686 3.28E-15
0.09 0.62160996827066445 0.62160996827066851 4.06E-15
0.1 0.54030230586813971 0.54030230586814452 4.801E-15

x-value y2-exact y2-computed Error in y2
0.01 0.09983341664682815 0.09983341664682685 1.30E-15
0.02 0.19866933079506121 0.19866933079505862 2.59E-15
0.03 0.29552020666133957 0.29552020666133577 3.80E-15
0.04 0.38941834230865049 0.38941834230864550 4.98E-15
0.05 0.47942553860420300 0.47942553860419698 6.02E-15
0.06 0.56464247339503535 0.56464247339502836 7.00E-15
0.07 0.64421768723769105 0.64421768723768327 7.77E-15
0.08 0.71735609089952276 0.71735609089951428 8.48E-15
0.09 0.78332690962748338 0.78332690962747445 8.93E-15
0.1 0.84147098480789650 0.84147098480788721 9.30E-15

The exact solution to (19) is given in [28], [27], [26], [24], [23], [25],
as

y(x) = −2Log

[
cosh

(
xθ
2
− θ

4

)
cosh

(
θ
4

)
]
, (20)

where θ satisfies θ =
√
2λ cosh( θ

4
). There are three possible solu-

tions considering the value of λ viz:
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Table 5. Observed absolute error for Bratu’s prob-
lem for λ = 1

Non-polynomial Laplace Decomposition B-Spline
x CHMM spline [30] [32] [31] [29]

0.1 2.54 × 10−13 5.77× 10−10 1.98× 10−6 2.68× 10−3 2.98× 10−6

0.2 5.04 × 10−13 2.47× 10−10 3.94× 10−6 2.02× 10−3 5.46× 10−6

0.3 7.20 × 10−13 4.56× 10−11 5.85× 10−6 1.52× 10−4 7.33× 10−6

0.4 9.30 × 10−13 9.64× 10−11 7.70× 10−6 2.20× 10−3 8.50× 10−6

0.5 9.34 × 10−13 1.46× 10−10 9.47× 10−6 3.01× 10−3 8.89× 10−6

0.6 9.30 × 10−13 9.64× 10−11 1.11× 10−5 2.20× 10−3 8.50× 10−6

0.7 7.20 × 10−13 4.56× 10−11 1.26× 10−5 1.52× 10−4 7.33× 10−6

0.8 5.04 × 10−13 2.47× 10−10 1.35× 10−5 2.02× 10−4 5.46× 10−6

0.9 2.54 × 10−13 5.77× 10−10 1.20× 10−5 2.68× 10−3 2.98× 10−6

Table 6. Observed absolute error for Bratu’s prob-
lem for λ = 2

Non-polynomial Laplace Decomposition B-Spline
x CHMM spline [30] [32] [31] [29]

0.1 7.92 × 10−12 9.71 × 10−9 2.13× 10−3 1.52× 10−2 1.72× 10−5

0.2 1.55 × 10−11 1.41 × 10−8 4.21× 10−3 1.47× 10−2 3.26× 10−5

0.3 3.04 × 10−11 1.98 × 10−8 6.19× 10−3 5.89× 10−3 4.49× 10−5

0.4 4.46 × 10−11 2.42 × 10−8 8.00× 10−3 3.25× 10−3 5.28× 10−5

0.5 4.51 × 10−11 2.60 × 10−8 9.60× 10−3 6.98× 10−3 5.56× 10−5

0.6 4.56 × 10−11 2.42 × 10−8 1.09× 10−3 3.25× 10−3 5.28× 10−5

0.7 3.04 × 10−13 1.98 × 10−8 1.19× 10−2 5.89× 10−3 4.49× 10−5

0.8 1.55 × 10−11 1.41 × 10−8 1.24× 10−2 1.47× 10−2 3.26× 10−5

0.9 7.92 × 10−12 9.71 × 10−9 1.09× 10−3 1.52× 10−2 1.72× 10−5

1 If λ > λc, then the Bratu problem has zero solution,
2 If λ = λc, then the Bratu problem has one solution,
3 If λ < λc, then the Bratu problem has tow solution, where
the critical value λc satisfies the equation

4 =
√
2λc sinh

θc
4
, λc = 3.513830719.

The Bratu’s problem in (19) are solved using h = 0.1 for different
values of λ = 1, 2 and 3.513830719 so that fair comparison can
be done with [29, 30, 31, 32].The absolute errors observed are as
presented in Tables 5, 6 and 7.

Problem 5: The two-point boundary value problem, Troesch’s
problem, was considered.

y′′(x) = ν sin(νy),
y(0) = 0, y(1) = 1,

}
(21)
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Table 7. Observed absolute error for Bratu’s prob-
lem for λ = 3.51

Non-polynomial B-Spline
x CHMM spline [30] [29]

0.1 2.45× 10−9 6.61× 10−6 3.84× 10−2

0.2 4.74× 10−9 5.83× 10−6 7.48× 10−2

0.3 2.29× 10−9 6.19× 10−6 1.06× 10−1

0.4 1.18× 10−10 6.89× 10−6 1.27× 10−1

0.5 2.50× 10−11 7.31× 10−6 1.35× 10−1

0.6 1.18× 10−10 6.89× 10−6 1.27× 10−1

0.7 2.9× 10−9 6.19× 10−6 1.06× 10−1

0.8 4.74× 10−9 5.83× 10−6 7.48× 10−2

0.9 2.45× 10−9 6.61× 10−6 3.84× 10−2

Table 8. Numerical solutions of Troeschs problem
for the case ν = 0.5

Exact SincGalerkin HPM Laplace
x [34] CHMM method[34] [35] Method[36]

0.1 0.095176902 0.095944349 0.095944347 0.095948026 0.0959444
0.2 0.190633869 0.19212875 0.192128740 0.192135797 0.1921288
0.3 0.286653403 0.28879440 0.288794409 0.288804238 0.2887944
0.4 0.383522929 0.38618485 0.386184841 0.386196642 0.3861849
0.5 0.481537385 0.48454716 0.484547165 0.4845599 0.4845472
0.6 0.581001975 0.58413325 0.584133254 0.584145785 0.5841333
0.7 0.682235133 0.68520115 0.685201142 0.685212297 0.6852012
0.8 0.785571787 0.68520115 0.788016528 0.788025104 0.7880166
0.9 0.891366988 0.89285422 0.892854218 0.892859085 0.8928542

where ν is a positive constant. The closed-form solution according
to [33] in term of the Jacobian elliptic sc(n|m) has been given as

y(x) =
2

ν
sinh−1

[
y′(0)
2

sc(νx|m)

]
, (22)

where m = 1− 1

4
(y′(0))2 and satisfies the transcendental equation

sc(ν|m)(1−m)
1
2 = sinh(

ν

2
) (23)

The solution y(x) has a singularity at a pole of the sc(ν|m) which
make the problem to be very difficult to solve as n increases. The
results are as reported in the Tables 8, 9 and 10 as compared with
those in [34, 35, 36].
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Table 9. Errors of Troeschs problem for the case
ν = 0.5

SincGalerkin HPM Laplace
x CHMM method[34] [35] Method[36]
0.1 7.675× 10−4 0.000767445 0.000771124 7.7× 10−4

0.2 1.495× 10−3 0.001494871 0.001501928 1.5× 10−3

0.3 2.141× 10−3 0.002141006 0.002150835 2.1× 10−3

0.4 2.662× 10−3 0.002661912 0.002673713 2.7× 10−3

0.5 3.010× 10−3 0.003009780 0.003022515 3.0× 10−3

0.6 3.131× 10−3 0.003131279 0.00314381 3.1× 10−3

0.7 2.966× 10−3 0.002966009 0.002977164 3.0× 10−3

0.8 2.445× 10−3 0.002444741 0.002453317 2.4× 10−3

0.9 1.487× 10−3 0.001487230 0.001492098 1.5× 10−3

Table 10. Errors of Troeschs problem for the case
ν = 1

SincGalerkin HPM Laplace
x CHMM method[34] [35] Method[36]
0.1 2.864× 10−3 0.002864253 0.003137419 2.9× 10−3

0.2 5.640× 10−3 0.005640467 0.006166675 5.9× 10−3

0.3 8.227× 10−3 0.008226572 0.008965863 8.2× 10−3

0.4 1.049× 10−2 0.010490630 0.011384418 1.0× 10−2

0.5 1.225× 10−2 0.012252675 0.013225579 1.2× 10−2

0.6 1.326× 10−2 0.013260386 0.014224205 1.3× 10−2

0.7 1.316× 10−2 0.013157446 0.01401684 1.3× 10−2

0.8 1.114× 10−2 0.011439736 0.012099173 1.1× 10−2

0.9 7.395× 10−3 0.007392506 0.007763039 7.4× 10−3

Problem 6: The Michaelis-Menten Oxygen diffusion problem with
uptake kinetics given in [37] was also considered.

y′′(x) +
2

x
y′(x) = δ

y(x)

y(x) + μ
, 0 < x < 1 (24)

with the boundary conditions

y′(0) = 0, (25)

ay(1) + by′(1) = c, a > 0, b ≥ 0, c ≥ .0, (26)

In Fig. 2, we display the numerical results for the values a = c =
1, b = 0.2, δ = 10 and μ. The results was obtained by choosing the
value of x such that the singular point will be avoided.
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Fig. 2. CHMM solution of Michaelis-Meneten Oxygen diffusion
problem

Problem 7: Van Der Pol oscillator [38]

y′′ − 2ε(1− y2)y′ + y = 0, y(0) = 0, y′(0) = 0.5, ε = 0.025. (27)

This solution to this problem within interval [0,50] over 100 itera-
tion is given in Fig.3.

10 20 30 40 50
x - Axis

-1.0
-0.5

0.5

1.0

y - Axis

Fig. 3. CHMM solution of Van-der-Pol problem
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5. CONCLUSION

An efficient and accurate CHMM had been derived for directly solv-
ing second order initial and boundary value problems in ordinary
differential equations. The application of the method to classi-
cal problems in physics such as Troesch’s, Bratu’s and Michaelis-
Mentene oxygen problem was presented. The new methods are
therefore recommended for general purpose use. Finally, the sta-
bility domain of the CHMM displaced in (Fig 1) shows that the
method is p-stable.
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