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SOME FIXED POINT THEOREMS IN CONE

RECTANGULAR METRIC SPACES

J. O. OLALERU1 AND B. SAMET2

ABSTRACT. We establish new fixed point theorems in cone
rectangular metric spaces. The presented theorems generalize,
extend and improve some existing results in the literature in-
cluding the results of M. Jleli and B. Samet (2009), A. Azam
and M. Arshad (2008), S. Moradi (2009), L.G. Huang and X.
Zhang (2007), Sh. Rezapour and R. Hamlbarani (2008), I. Sahin
and M. Telci (2009), and others. In all our results, we dispense
with the the normality assumption which is a characteristic of
most of the previous results.
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1. INTRODUCTION AND PRELIMINARIES

The concept of cone metric spaces was introduced by Huang and
Zhang [7], where the set of real numbers is replaced by an ordered
Banach space. They introduced the basic definitions and discuss
some properties of convergence of sequences in cone metric spaces.
They also obtained some fixed point theorems in normal cone metric
spaces for mappings satisfying various contractive conditions. After
that, cone metric spaces have been studied by many other authors
(see [1, 2, 6, 8, 9, 10, 13, 14, 16] and others).
Following the idea of Branciari [5], Azam, Arshad and Beg [3]

introduced the notion of cone rectangular metric spaces by replacing
the triangle inequality with a rectangular inequality. After that,
Jleli and Samet [11] extended the Kannan’s fixed point theorem in
such spaces.
Let E always be a real Banach space equipped with the norm

‖ · ‖E and P be a subset of E. We denote by 0E the zero vector of
E. P is called a cone if
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(i) P is closed, non-empty, P �= {0E},
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply ax+ by ∈ P ,
(iii) P ∩ (−P ) = {0E}.
For a given cone P ⊆ E, we can define a partial ordering ≤E on

E with respect to P by:

x ≤E y ⇔ y − x ∈ P for all x, y ∈ E.

We shall write x <E y if x ≤E y and x �= y, while x � y will stand
for y − x ∈ int P , where int P denotes the interior of P .
The cone P is called normal if there exists K > 0 such that for

all x, y ∈ E, we have:

0 ≤E x ≤E y ⇒ ‖x‖E ≤E K‖y‖E.
The least positive number K satisfying the above property is called
the normal constant of P .
Rezapour and Hamlbarani [13] showed that there are no normal

cones with normal constant K < 1. Moreover, they proved that for
each ν > 1 there are cones with normal constant K > ν.
In the following, we always suppose that E is a real Banach space

and P is a cone in E with int P �= ∅ and ≤E is the partial ordering
with respect to P .

Definition 1.1. ([7]) Let X be a non-empty set. Suppose ρ :
X ×X → E satisfies:

(1) 0E ≤E ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0E if and only
if x = y,

(2) ρ(x, y) = ρ(y, x) for all x, y ∈ X ,
(3) ρ(x, y) ≤E ρ(x, z) + ρ(z, y) for all x, y, z ∈ X .

Then ρ is called a cone metric on X, and (X, ρ) is called a cone
metric space.

Example 1.1. ([7]) Let E = R
2, P = {(x, y) ∈ R

2 | x ≥ 0, y ≥ 0},
X = R and ρ : X ×X → E defined by:

ρ(x, y) = (|x− y|, τ |x− y|) for all x, y ∈ X,

where τ ≥ 0 is a constant. Then (X, ρ) is a cone metric space.

Definition 1.2. ([3]) Let X be a non-empty set. Suppose d :
X ×X → E satisfies:

(a) 0E ≤E d(x, y) for all x, y ∈ X and d(x, y) = 0E if and only
if x = y,

(b) d(x, y) = d(y, x) for all x, y ∈ X,
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(c) d(x, y) ≤E d(x, w)+d(w, z)+d(z, y) for all x, y ∈ X and for
all distinct points w, z ∈ X\{x, y} [rectangular inequality].

Then d is called a cone rectangular metric onX, and (X, d) is called
a cone rectangular metric space.

It is clear that any cone metric space is a cone rectangular metric
space. The converse is not true in general (a counter-example is
given in [11]).

Definition 1.3. ([3]) Let (X, d) be a cone rectangular metric space,
{xn} be a sequence in X and x ∈ X . If for every c ∈ E with 0E � c
there is N ∈ N such that for all n > N , d(xn, x) � c, then {xn} is
said to be convergent to x and x is a limit of {xn}. We denote this
by xn → x as n → +∞ or lim

n→+∞
xn = x.

Definition 1.4. ([3]) Let (X, d) be a cone rectangular metric space
and {xn} be a sequence in X. If for all c ∈ E with 0E � c there is
N ∈ N such that for all n > N , d(xn, xn+m) � c, then {xn} is called
a Cauchy sequence in (X, d). If every Cauchy sequence is convergent
in (X, d), then (X, d) is called a complete cone rectangular metric
space.

Remark 1.1. The reader should give attention to the difference
between cone metric spaces and cone rectangular metric spaces.
If (X, d) is a cone metric space and {xn} is a convergent sequence in
(X, d), then the limit of {xn} is unique (see [7]-Lemma 2). However,
when (X, d) is a cone rectangular metric space, it is not the case.
A counter-example is given in [11] (see also [15]). If (X, d) is a cone
metric space and {xn} is a convergent sequence in (X, d), then {xn}
is a Cauchy sequence in (X, d) (see [7]-Lemma 3). However, when
(X, d) is a cone rectangular metric space, this result is not true in
general. A counter-example is given in [11] (see also 15]).

In this paper, we establish new fixed point theorems in rectangu-
lar cone metric spaces. Our obtained results generalize, extend and
improve some existing results in the literature.

2. MAIN RESUTS

We need the following definition.

Definition 2.1. ([4]) Let (X, d) be a rectangular cone metric space.
A mapping S : X → X is said to be sequentially convergent if we
have, for every sequence {yn}, if {Tyn} is convergent then {yn} is
also convergent. S is said to be subsequentially convergent if we
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have, for every sequence {yn}, if {Tyn} is convergent then {yn} has
a convergent subsequence.

The proof of the following theorem essentially follows the classical
case.

Theorem 2.1. Let (X, d) be a rectangular cone metric space. A
mapping S : X → X is said to be continuous if and only if for
every sequence {xn} in X , we have xn → x implies Sxn → Sx.

Our first result is the following.

Theorem 2.2. Let (X, d) be a Hausdorff and complete cone rect-
angular metric space with cone P . Let T, S : X → X be mappings
such that S is continuous, one-to-one and subsequentially conver-
gent. Suppose that

d(STx, STy) ≤E h[d(Sx, STx) + d(Sy, STy)] (1)

for all x, y ∈ X, where 0 < h < 1/2. Then, T has a unique fixed
point. Moreover, if S is sequentially convergent, then for every
x0 ∈ X, the sequence {T nx0} converges to this fixed point.

Proof. For any arbitrary point x0 ∈ X, construct the sequence
{xn} in X such that

xn+1 = Txn(equivalently xn = T nx0) for all n ∈ N.

From (1), we have:

d(Sxn+1, Sxn) = d(STxn, STxn−1)

≤E h[d(Sxn, STxn) + d(Sxn−1, STxn−1)]

= h[d(Sxn, Sxn+1) + d(Sxn−1, Sxn)].

Then

d(Sxn+1, Sxn) ≤E

(
h

1− h

)
d(Sxn−1, Sxn).

Continuing this process, we obtain:

d(Sxn+1, Sxn) ≤E rnd(Sx0, Sx1), (2)

where

0 ≤ r =
h

1− h
< 1.

We divide the proof into two cases.

• First case. Suppose that Sxm = Sxn for some m,n ∈ N, m �= n.
Letm > n, p = m−n and y = xn = T nx0. Since S is one-to-one, we
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have xm = xn, that is, T
mx0 = T nx0, that is, T

m−n(T nx0) = T nx0,
i.e., T py = y. By the same argument, we have:

d(Sy, STy) = d(ST py, ST p+1y) ≤E rpd(Sy, STy).

Then

−(1−rp)d(Sy, STy) ∈ P and (1−rp)d(Sy, STy) ∈ P (since p > 1).

This implies by the definition of a cone that d(Sy, STy) = 0E, that
is, Sy = STy. Since S is one-to-one, we get y = Ty, and y is a
fixed point of T .

• Second case. Suppose that Sxm �= Sxn for all m,n ∈ N with
m �= n. Using (1) and (2), we have:

d(Sxn, Sxn+2) = d(STxn−1, STxn+1)

≤E h[d(Sxn−1, STxn−1) + d(Sxn+1, STxn+1)]

= hd(Sxn−1, Sxn) + hd(Sxn+1, Sxn+2)

≤E hrn−1(1 + r2)d(Sx0, Sx1)

≤E hrn−1(1 + r)d(Sx0, Sx1)

≤E rnd(Sx0, Sx1).

Thus,

d(Sxn, Sxn+2) ≤E rnd(Sx0, Sx1). (3)

Now, if m > 2 is odd then writing m = 2� + 1, � ≥ 1, using the
rectangular inequality and (2), we can easily show that

d(Sxn, Sxn+m) ≤E d(Sxn, Sxn+1) + d(Sxn+1, Sxn+2) + · · ·
+d(Sxn+2�, Sxn+2�+1)

≤E (rn + rn+1 + · · ·+ rn+2�)d(Sx0, Sx1)

≤E
rn

1− r
d(Sx0, Sx1).

If m > 2 is even then writing m = 2�, � ≥ 2, using the rectangular
inequality, (2) and (3), we get:

d(Sxn, Sxn+m) ≤E d(Sxn, Sxn+2) + d(Sxn+2, Sxn+3) + · · ·
+d(Sxn+2�−1, Sxn+2�x0)

≤E (rn + rn+2 + rn+3 + · · ·+ rn+2�−1)d(Sx0, Sx1)

≤E
rn

1− r
d(Sx0, Sx1).
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Thus combining all the cases, we obtain:

d(Sxn, Sxn+m) ≤E
rn

1− r
d(Sx0, Sx1) for all m,n ∈ N. (4)

Now, let c ba an arbitrary point in E with 0E � c. Since, 0 < r < 1,
there exists N ∈ N such that

rn

1− r
d(Sx0, Sx1) � c for all n > N. (5)

Combining (4) and (5), we obtain:

d(Sxn, Sxp) � c for all p > n > N.

Then we proved that {Sxn} is a Cauchy sequence in (X, d). Since
(X, d) is a complete rectangular cone metric space, there is x ∈ X
such that

Sxn → x as n → +∞. (6)

Since S is subsequentially convergent, {xn} has a convergent subse-
quence. Then there exists x∗ ∈ X such that xn(p) → x∗ as p → +∞.
Using the continuity of S, we have:

Sxn(p) → Sx∗ as p → +∞. (7)

Combining (6) and (7), and using the fact that (X, d) is Hausdorff,
we have:

Sx∗ = x. (8)

Now, let c be an arbitrary point of E such that 0E � c. From (2),
(6) and (8), there exists N ∈ N such that

d(Sx∗, Sxn) + (1+ h)d(Sxn, Sxn+1) � (1− h)c for all n ≥ N. (9)

Without any loss of generality, we can assume that Sxr �= Sx∗, STx∗

for all r ∈ N. Using (1) and the rectangular inequality, we have:

d(Sx∗, STx∗) ≤E d(Sx∗, Sxn) + d(Sxn, Sxn+1) + d(STxn, STx
∗)

≤E d(Sx∗, Sxn) + d(Sxn, Sxn+1) + hd(Sxn, Sxn+1)

+hd(Sx∗, STx∗).

Then, from (9), for all n ≥ N , we have:

d(Sx∗, STx∗) ≤E
1

1− h
[d(Sx∗, Sxn) + (1 + h)d(Sxn, Sxn+1)] � c.

Therefore,

d(Sx∗, STx∗) ≤E c for all c � 0E.

Hence, for a fixed c � 0E, we have:

εc− d(Sx∗, STx∗) ∈ P for all ε > 0.
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Letting ε → 0+ and using that P is closed, we obtain:

−d(Sx∗, STx∗) ∈ P and d(Sx∗, STx∗) ∈ P.

Thus, d(Sx∗, STx∗) = 0E, that is, Sx
∗ = STx∗. Since S is one-to-

one, we get x∗ = Tx∗, and x∗ is a fixed point of T .
Now, suppose that y∗ is another fixed point of T , that is, y∗ =

Ty∗. From (1), we have:

d(Sx∗, Sy∗) = d(STx∗, STy∗) ≤E hd(Sx∗, Sx∗)+hd(Sy∗, Sy∗) = 0E .

Then, Sx∗ = Sy∗ and x∗ = y∗ (since S is one-to-one). Then we
proved the uniqueness of the fixed point of T .
Now, if S is sequentially convergent, by replacing {n(p)} with

{n}, we conclude that xn → x∗ and this shows that {xn} converges
to the fixed point of T . �

Remark 2.1. Taking S : X → X the identity mapping (Sx = x
for all x ∈ X) in Theorem 2. 2, we obtain the result given by Jleli
and Samet in [11].

The following example shows that Theorem 2.2 is indeed a proper
extension of Jleli and Samet Theorem [11]. This example is inspired
by [12].

Example 2.1. Let X = {1, 2, 3, 4}. Denote by Mk(R) the set of
k×k real matrices, k ∈ N. Let E = Mk(R) and P = {(aij)1≤i,j≤k ∈
E | aij ≥ 0 for all i, j}. We denote by Ik the identity matrix and 0E
the zero matrix. Define d : X ×X → Mk(R) by:

d(1, 2) = d(2, 1) = 3Ik,

d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = Ik,

d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = 4Ik,

d(1, 1) = d(2, 2) = d(3, 3) = d(4, 4) = 0E .

Obviously (X, d) is a rectangular cone metric space and is not a
cone metric space since

d(1, 2) = 3Ik >E d(1, 3) + d(3, 2) = Ik + Ik = 2Ik.

Define T : X → X by:

Tx =

{
2 if x �= 1,
4 if x = 1.
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Now, define S : X → X by:

Sx =

⎧⎪⎪⎨
⎪⎪⎩

2 if x = 4,
3 if x = 2,
4 if x = 1,
1 if x = 3.

Now, let us check that all the hypotheses of Theorem 2. 2 are sat-
isfied.

• (X, d) is Hausdorff.
Let {xn} be a sequence in X such that xn → x and xn → y as
n → +∞, where x, y ∈ X. We have:

d(xn, x), d(xn, y) ∈ {0E , Ik, 3Ik, 4Ik}.
Let c be a k × k matrix such that the entries are non-zero and the
diagonal entries less than 1. Since c � 0E , there exists N ∈ N such
that

d(xn, x) � c for all n ≥ N and d(xn, y) � c for all n ≥ N.

This implies that

d(xn, x) = d(xn, y) = 0E for all n ≥ N.

Then x = y and (X, d) is a Hausdorff cone rectangular metric space.

• (X, d) is complete.
Let {xn} be a Cauchy sequence in (X, d). Let c be as defined above.
Since c � 0E , there exists N ∈ N such that

d(xn, xm) � c for all m > n > N.

Since d(xn, xm) ∈ {0E, Ik, 3Ik, 4Ik}, we have:

d(xn, xm) = 0E for all m > n > N.

This implies that

xn = xN+1 for all n ≥ N + 1.

Therefore
xn → xN+1 as n → +∞.

Then (X, d) is complete.

• S : X → X is continuous and one-to-one.
Let {xn} be a sequence in X such that xn → x ∈ X as n → +∞.
This implies that there exists N ∈ N such that xn = x for all
n ≥ N . Then Sxn → Sx as n → +∞, and S is continuous. It is
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immediate to show that S is one-to-one.

• S is sequentially convergent.
Let {xn} be a sequence in X such that Sxn → x ∈ X as n → +∞.
Then there exists N ∈ N such that Sxn = x for all n ≥ N . Since
S is one-to-one, we have xn = xN for all n ≥ N . Then {xn} is
convergent, and S is sequentially convergent.

• The required contractive condition holds.
For all x ∈ X, we have:

STx =

{
3 if x �= 1,
2 if x = 1.

We can show that

d(STx, STy) ≤E
1

3
[d(Sx, STx) + d(Sy, STy)]

for all x, y ∈ X.
Now, all the hypotheses of Theorem 2. 2 are satisfied. Then T

has a unique fixed point, that is, x∗ = 2. Note that Jleli and Samet
theorem [11] can not be used in this case, since we have:

d(T1, T2) = d(1, T1) + d(2, T2).

Remark 2.2. Theorem 2. 2 extends given results in [2, 7, 12, 13].

We use the following notation. For a, b, c ∈ E, we will denote
the proposition (a ≤E b) ∨ (a ≤E c) by a ≤E [b

∨
c]. Moreover, for

r ∈ R, a ≤E r [b
∨

c] will denote (a ≤E rb) ∨ (a ≤E rc).

Corollary 2.1. Let (X, d) be a a Hausdorff and complete cone
rectangular metric space with cone P . Let T, S : X → X be
mappings such that S is continuous, one-to-one and subsequentially
convergent. Suppose that

d(STx, STy) ≤E h
[
d(Sx, STx)

∨
d(Sy, STy)

]
(10)

for all x, y ∈ X, where 0 < h < 1/2. Then, T has a unique fixed
point. Moreover, if S is sequentially convergent, then for every
x0 ∈ X, the sequence {T nx0} converges to this fixed point.

Proof. It is easy to show that (10) implies (1). Then, the result is
an immediate consequence of Theorem2. 2. �
Now, we address the following question: Does the result of Corol-

lary 2. 1 hold if h ≥ 1
2
? The next theorem gives a positive answer

in the case 1
2
≤ h < 1.
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Theorem 2.3. Let (X, d) be a a Hausdorff and complete cone
rectangular metric space with cone P . Let T, S : X → X be
mappings such that S is continuous, one-to-one and subsequentially
convergent. Suppose that

d(STx, STy) ≤E h
[
d(STx, Sx)

∨
d(STy, Sy)

]
(11)

for all x, y ∈ X, where 0 < h < 1. Then T has a unique fixed point.

Proof. For any arbitrary point x0 ∈ X, construct the sequence
{xn} in X such that

xn+1 = Txn for all n ∈ N.

Without restriction to the generality, we can suppose that xn �=
xn+1 for all n. From (11), we have:

d(Sxn+1, Sxn) = d(STxn, STxn−1)

≤E h
[
d(Sxn+1, Sxn)

∨
d(Sxn, Sxn−1)

]
.

If d(Sxn+1, Sxn) ≤E hd(Sxn+1, Sxn), we have −(1−h)d(Sxn+1, Sxn)
∈ P . Since h < 1, also we have (1 − h)d(Sxn+1, Sxn) ∈ P . By the
definition of a cone, we get Sxn = Sxn+1, which implies since S is
one-to-one that xn = xn+1, that is impossible by assumption. Then

d(Sxn+1, Sxn) ≤E hd(Sxn, Sxn−1).

Continuing this process, we obtain:

d(Sxn+1, Sxn) ≤E hnd(Sx0, Sx1) for all n. (12)

We divide the proof into two cases.

• First case. Suppose that xm = xn for some m,n ∈ N, m �= n.
Let m > n, then Tm−n(T nx0) = T nx0, that is, T py = y, where
p = m− n and y = T nx0. From (12), we have:

d(Sy, STy) = d(ST py, ST p+1y) ≤E hpd(Sy, STy).

Since, p > 1 and h < 1, we obtain d(Sy, STy) = 0E , that is,
Sy = STy, which implies since S is one-to-one that y is a fixed
point of T .

• Second case. Suppose that xm �= xn for all m,n ∈ N with m �= n.
Using (11), we have:

d(Sxn, Sxn+2) = d(STxn−1, STxn+1)

≤E h
[
d(Sxn−1, Sxn)

∨
d(Sxn+2, Sxn+1)

]
.
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If d(Sxn, Sxn+2) ≤E hd(Sxn−1, Sxn), from (12), we have:

d(Sxn, Sxn+2) ≤E hd(Sxn−1, Sxn)

≤E hnd(Sx0, Sx1).

If d(Sxn, Sxn+2) ≤E hd(Sxn+2, Sxn+1), we have:

d(Sxn, Sxn+2) ≤E hd(Sxn+2, Sxn+1)

≤E hn+2d(Sx0, Sx1)

≤E hnd(Sx0, Sx1).

Then, in all cases, we have:

d(Sxn, Sxn+2) ≤E hnd(Sx0, Sx1). (13)

Now, if m > 2 is odd then writing m = 2� + 1, � ≥ 1, using the
rectangular inequality and (12), we can easily show that

d(Sxn, Sxn+m) ≤E d(Sxn, Sxn+1) + d(Sxn+1, Sxn+2) + · · ·
+d(Sxn+2�, Sxn+2�+1)

≤E (hn + hn+1 + · · ·+ hn+2�)d(Sx0, Sx1)

≤E
hn

1− h
d(Sx0, Sx1).

If m > 2 is even then writing m = 2�, � ≥ 2, using the rectangular
inequality, (12) and (13), we get:

d(Sxn, Sxn+m) ≤E d(Sxn, Sxn+2) + d(Sxn+2, Sxn+3) + · · ·
+d(Sxn+2�−1, Sxn+2�)

≤E (hn + hn+2 + hn+3 + · · ·+ hn+2�−1)d(Sx0, Sx1)

≤E
hn

1− h
d(Sx0, Sx1).

Thus combining all the cases, we obtain:

d(Sxn, Sxn+m) ≤E
hn

1− h
d(Sx0, Sx1) for all m,n ∈ N. (14)

Now, let c ba an arbitrary point in E with 0E � c. Since 0 < h < 1,
there exists N ∈ N such that

hn

1− h
d(Sx0, Sx1) � c for all n > N. (15)

Combining (14) and (15), we obtain:

d(Sxn, Sxp) � c for all p > n > N.



156 J. O. OLALERU AND B. SAMET

Then we proved that {Sxn} is a Cauchy sequence in (X, d). Since
(X, d) is a complete rectangular cone metric space, there is x ∈ X
such that

Sxn → x as n → +∞. (16)

Since S is subsequentially convergent, {xn} has a convergent subse-
quence. Then there exists x∗ ∈ X such that xn(p) → x∗ as p → +∞.
Using the continuity of S, we have:

Sxn(p) → Sx∗ as p → +∞. (17)

Combining (16) and (17) and using that (X, d) is Hausdorff, we
have:

Sx∗ = x. (18)

Let c be an arbitrary point in E with 0E � c. From (12), (16) and
(18), there is N ∈ N such that

d(Sx∗, Sxn) + d(Sxn, Sxn+1) + hd(Sxn, Sxn+1) � (1− h)c (19)

for all n ≥ N . Without any loss of generality, we can assume that
Sxr �= Sx∗, STx∗ for all r ∈ N. Using (11) and the rectangular
inequality, we obtain:

d(Sx∗, STx∗) ≤E d(Sx∗, Sxn) + d(Sxn, Sxn+1) + d(STxn, STx
∗)

≤E d(Sx∗, Sxn) + d(Sxn, Sxn+1)

+h
[
d(Sxn, Sxn+1)

∨
d(STx∗, Sx∗)

]
≤E d(Sx∗, Sxn) + d(Sxn, Sxn+1)

+hd(Sxn, Sxn+1) + hd(STx∗, Sx∗).

Therefore, by (19), for all n ≥ N , we have:

d(Sx∗, STx∗) ≤E
1

1− h
[d(Sx∗, Sxn)+d(Sxn, Sxn+1)+hd(Sxn, Sxn+1)] � c.

Then we proved that

c− d(Sx∗, STx∗) ∈ P for all c � 0E.

Then, for a fixed c � 0E, we have:

εc− d(Sx∗, STx∗) ∈ P for all ε > 0.

Letting ε → 0+, since P is closed, we obtain:

−d(Sx∗, STx∗) ∈ P and d(Sx∗, STx∗) ∈ P.

Thus d(Sx∗, STx∗) = 0E , that is, Sx
∗ = STx∗. Since S is one-to-

one, we have x∗ = Tx∗, and x∗ is a fixed point of T . Now, suppose
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that y∗ is also a fixed point of T , that is, y∗ = Ty∗. Using (11), we
have:

d(Sx∗, Sy∗) = d(STx∗, STy∗) ≤E h
[
d(Sx∗, STx∗)

∨
d(Sy∗, STy∗)

]
= 0E.

Then Sx∗ = Sy∗ and since S is one-to-one, we have x∗ = y∗. Hence,
the uniqueness of the fixed point is proved.
Now, if S is sequentially convergent, by replacing {n(p)} with

{n}, we conclude that xn → x∗ and this shows that {xn} converges
to the fixed point of T . �
Taking S : X → X the identity mapping (Sx = x for all x ∈ X)

in Theorem 2.3, we obtain the following result.

Corollary 2.2. Let (X, d) be a Hausdorff and complete cone rect-
angular metric space with cone P . Let T : X → X be a mapping
satisfying:

d(Tx, Ty) ≤E h
[
d(Tx, x)

∨
d(Ty, y)

]
for all x, y ∈ X, where 0 < h < 1. Then T has a unique fixed point.

Remark 2.3. Corollary 2.2 is an extension of a result of Sahin and
Telci (Theorem 4.3, [14]).

3. ACKNOWLEDGEMENTS

The authors would like to thank the referee whose comments
improved the original version of this manuscript.

REFERENCES
[1] M. Abbas, B. E. Rhoades and T. Nazir, Common fixed points for four maps in

cone metric spaces, Applied Mathematics and Computation. 216 80-86, 2010.
[2] A. Azam and M. Arshad, Kannan fixed point theorem on generalized metric spaces,

J. Nonlinear Sci. Appl. 1 (1) 45-48, 2008.
[3] A. Azam, M. Arshad and I. Beg, Banach contraction principle on cone rectangular

metric spaces, Appl. Anal. Discrete Math. 3 236-241, 2009.
[4] A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh, Two fixed point theorems

for special mappings, arXiv:0903.1504v1 [math.FA].
[5] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of gen-

eralized metric spaces, Publ. Math. Debrecen. 57 1-2 31-37, 2000.
[6] Wei-Shih Du, A note on cone metric fixed point theory and its equivalence, Non-

linear Analysis. 72 2259-2261, 2010.
[7] L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of con-

tractive mappings, J. Math. Anal. Appl. 332 1468-1476, 2007.
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