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A CONTINUOUS RUNGE-KUTTA-NYSTROM
COLLOCATION METHOD WITH TRIGONOMETRIC
COEFFICIENTS FOR PERIODIC INITIAL VALUE
PROBLEMS

J. 0. EHIGIE!, S. N. JATOR AND S. A. OKUNUGA

ABSTRACT. In this paper, we construct a two-step continuous
multistep scheme of Numerov type with two off-grid points via
multistep collocation technique. With the generation of several
discrete multistep schemes of Numerov type, we show that these
discrete methods represent a practical four stage Runge-Kutta-
Nystrom Collocation Method (RKNCM) with trigonometric co-
efficients. A detailed analysis of the method such as the stability
plots as well as the phase properties of the RKNCM are investi-
gated and presented. Numerical experiments are carried out to
illustrate the high effectiveness of the RKNCM compared with
some recent methods in the literature.
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1. INTRODUCTION

Periodic Initial Value Problems (IVPs) are problems encountered in
several areas of engineering and science, such as celestial mechanics,
circuit theory, control theory, chemical kinetics, and biology. Many
of such equations are the Schrodinger equation, Duffing equations,
pleiades problem, orbital problems to mention a few.

In this paper, the direct numerical solution to the second order
initial value problem of the form

y' = flz,y), y(r0) = Yo, y'(z0) = o (1)
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is considered. Some researchers have numerically solved (1) by first
reducing it to a system of first order differential equations before
solving with the Runge-Kutta methods or Linear multistep meth-
ods (see Refs [15], [20]). However, this paper presents an approach
for the direct solution of (1) without reducing to first order systems.
This is because a direct approach by Nystrom methods reduces the
computational cost by 25 percent. [25].

The classical Runge-Kutta-Nystrom methods for solving directly is
given by

Yn+1 = Yn + hy/ + h? Zj:l b]f(xn + thv }/J)a
Yni1 = Y + hZ§:1 bf (zn + ¢;h, Y5),

Y=y +cihy, + 02300 ajef (20 + cxh, Yy), j=1,2,--- s
(2)

which can be represented in a Butcher array in the form

Ci|ay; Az -+ 0Ais
Co | Q21 Q22 - (Agg
Cs | Qg1 Qg2 - Ugg
by by --- by
by by --- b

The P- stability of a numerical method was a condition discovered
by Lambert and Watson [21] to ascertain that a numerical solution
has exactly the same behavior with theoretical solution to oscilla-
tory systems. Also, it ensures that numerical solution copes with
periodic problems independently of the stepsize used in the imple-
mentation. In order to avoid such analysis, the approach introduced
by Gautschi [14] for multistep methods and later extended by Ly-
che [22] seems more attractive because of the trigonometric fitting
in the numerical method.

Ozawa [26], derived a class of the functional fitted Runge-Kutta
Nystrom via order conditions approach [15], while Coleman and
Duxbury [6] derived some class of methods via mixed collocation ap-
proach including the first derivative in collocation conditions, (see
Refs [9], [19]). Alternatively, we derive a Runge-Kutta-Nystrom col-
location method with trigonometric coefficients via multistep col-
location technique from a continuous two-step Numerov scheme,
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whose coefficients are functions of frequency and the step size such
that the exact solutions of the IVPs are obtained if the frequencies
can be estimated or are known in advance [20].

Following Jator [19], via multistep collocation technique, we develop
a continuous Numerov type formula given by

a(z,v)yn + (2, 0)yn-1 + h* 30 Bi(®,0) fute,

y’(a:) = % (&(.’ﬂ, U)yn + &(x, U)ynfl + h2 Zf:l ﬁz(x> U)fnJrCi)

=
s

S~—
I

(3)
such that evaluation at some specific points yields the two-step mul-
tistep methods of Numerov type which are transformed to a trigono-
metrically fitted Runge-Kutta-Nystréom formula by an appropri-
ate transformation. The resulting Runge-Kutta-Nystrom Method
(RKNM) scheme will be represented in a Butcher array given by

¢ |api(v) apw) - as(v)
co | ag1(v) agn(v) -+ ag(v)
Cs a_sl'(v) 6382‘(0) N ogss.(v)
bi(v)  be(v) -+ bs(v)
bi(v)  be(v) -+ bs(v)

Several methods on trigonometrically fitted Runge-Kutta-Nystrom
method can be found in literatures [[7], [14], [24], [26]- [30]]. A
detailed survey of methods is presented in Paternoster [28] and the
references therein. In this paper, the aim is to derive a four-stage
Runge-Kutta-Nystrom method with First Stage As Last (FSAL)
property from a two-step continuous multistep scheme with trigono-
metric coefficients. To avoid large accumulation of errors, the nu-
merical method shall be implemented in a block by block fashion
as implemented in Refs [[1], [8], [9], [18], [19], [24]].

The rest of the paper is organized as follows: The derivation of the
continuous multistep method and the corresponding trigonometri-
cally fitted Runge-Kutta-Nystrom is presented in section 2. The
stability analysis such as the stability plot, P-stability and the or-
der of dispersion are discussed in section 3. The error analysis is
shown is section 4. Finally, some numerical experiments are consid-
ered to show the numerical performance of the methods in section
5.
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2. THE CONTINUOUS METHOD, ITS BLOCK MULTISTEP
EXTENSION AND THE CORRESPONDING
RUNGE-KUTTA-NYSTROM FORMULA

2.1. Theoretical procedure. Let initial value problem (1) be such
that it satisfies all the necessary requirements for the existence of
the uniqueness of solution. Now, let v, be an approximate solu-
tion to y(z) at x,. The numerical solution at point z,,1 = =, + h
is of interest where h is the stepsize. Hence, we assume that the
numerical solution is represented by the continuous formulation

4
y(l‘) = &(1‘, U)yn + &(;1:, ’U)ynfl + h2 Z ﬁz(x> U)fnJrci (4)
i=1
where a(z,v), a(z,v), Bi(z,v), i = 1,2,3,4 are the continuous
coefficients that must be uniquely determined. We assume that
Yntj = Y( @0 + Jh), Ynie; = Y(@n + cih), furj = y" (2, + c;h) and
Jote, = (;En + c;jh, yn+cj). Eqn (4) facilitated with the derivative
of (4) given by

2(z,0) =y (z,v) = dix <a(x V)Yn + (@, V)yn_1 + h? Zﬂz Z,0) frte; ) (5)

i=1

is evaluated at some points to obtain a block multistep extension
in the form

AY,, = By_1 + h*CF,,_1 + h*DF,, (6)
where
Yoo = [Wos1:Yns2 Ynits Zos1]’
Y1 = [yn__ Yn—1Yns 2l
Frn = [fn +2 fn+1>zn+1]T'
Fooi = |f _g nls s S

and A, B, C, D and E are 4 x 4 square matrices which are functions
of v, (see Ref [12]). The methods (6) obtained from the continuous
method (4) and (5) will be transformed to a corresponding Runge-
Kutta-Nystrom formula.

2.2. Construction of the method. In this section, we present
the construction of the continuous Runge-Kutta-Nystrom formula-
tion (4) and (5) for arbitrary abscissa ¢; = {c1, ca, 3,4} by the
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multistep collocation technique described in section 2.1.

We proceed by seeking to approximate the exact solution by the
interpolating function of the form

y(x) = Acosw(z —x,) + Beosw(x — x,) + Z a;(z — z,)"(7)

= Z Vi3 () (8)

where
P)/] - {A7 Ba ap, G1, A2, a3}

and the basis function

pi(z) = {cos (w(z — x,)),sin (w(x — x,)), (x — r,),i=0,1,2,3}

Let the collocation conditions be imposed such that the interpolat-
ing function (7) satisfies the following

y(anrj) = UYn+j, ]: Oa _1a (9)
hzy”(xn'ﬂij) - h2fn+0j ] - ]-7 27 3747 (10)

with v = wh, (9) and (10) leads to a system of six equations with
six unknown parameters to be uniquely determined which takes the
matrix form

T(v)y; = ®;, (11)

where T'(v) is a matrix obtained from the interpolation and collo-
cation of the basis function ¢;(x) given by

T(v) =
wolsgn) mlsgn) wz}(;n) %’(L;n) m}iagn) %]5;:“)
po(Tn—_1) p1(zn—1) w2(Tn—_1) p3(Tn—_1) pa(mn_1) w5(Tn—1)
2 72 h2 2 2 72
h2 0 (Tnter) 1 (Tnger) 90,2,(171-"-%) O3 (Tnter) @4 (Tnter) 05 (@nte)
906/ (Tntey) Y (@ntes) 95 (Tnte,y) 905 (Tntes) @Y (Tntey) 4;0/5/ (Tntey)
0 (Tntes) @Y (Tntey) ”(xn-&-rs) 5 (@Tntes) P4 (Tntes) 05 (Tntey)
00 (Tntes) P (Tntey) @5 (@n4es) 05 (Tntes) @4 (Tntes) 05 (@niey)

T
Vi = [A7Baa07a17a27a3] ,

cbj - [ym Yn—1, hzfn-ﬁ-Cu h2fn+627 h2fn+637 h2f7’l+04]T
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Theorem 2.1. Given condition (9) and (10), the continuous for-
mulations (4) and (5) respectively are equivalent to the following:

>~ det(T}(v))

y(r) = ' W%‘(I) (12)

and
d (<= det(T;(v))
() = — —— D, 13
7=0
where matriz T;(v) is the matriz obtained by replacing the j™ col-
umn of T'(v) by matriz I'; and

3() = feos ((a — @), sin (W(z — ), 1, (@ — @), (@ — 20)°, (@ — ©0)°}

Proof:

If we require that the method (4) be defined by the assumed basis
functions ¢;(z)

a(x,v) = 320 Qirr(v)@i(@), Jj=0
ar,v) = Y7o i (v)ei(x), J=-1 (14)
h2B(x) =327, W2 Bisre; (0)gi(x),  j=1,2,3,4
then the coefficients @ 1,0(v), Qip1,-1(v) and Biy 1, (v) are undeter-
mined elements to be determined.

Substituting (14) in (4) we obtain

5 5 4 5
y(@) = @ir1,00)¢i(@)yn + Y Qir1,-1(0)¢i(@yn-1 + Y > A Bit1,c; (V)pi(@) frte;
=0 =0 j=11i=0
(15)

which can equally be expressed as

y(z) = Z i(v)pi(x) (16)

where
Yi(v) = Qip1,0(0)Yn + Qig1,-1(V)Yp—1 + Z?=1 h25¢+1,cj (V) frtess
i=0,1,....5
(17)
Now, if condition (9) and (10) are satisfied on (16), a system of six
equation in matrix form

T(v)- =9 (18)
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where v; are to be uniquely determined via Crammers rule. There-
fore,
det(T; (v)
T et (T ()
where T};(v) is obtained by replacing the jth column of matrix 7'(v)
by ®;. Hence, the continuous multistep scheme is obtained by
substitution 7, in (8). Hence we have

=0,1,....5

5

Z det(T};(v) o5(2) (19)

det(T(v)
Jj=

and
) = /() = = (j j’;}éf Yo >) (20)

Remark 2.2 It is of interest to mention that continuous methods
(19) and (20) which are equivalent forms of (4) and (5), respectively
for s = 4 are used to produce several two-step hybrid multistep
methods with trigonometric coefficients which can be expressed in
the general linear methods of Butcher.

2.3. Specification of the method. In this section, we develop a
four-stage RKNCM with four abscissae ¢; = {¢1, ¢a, ¢3, ¢4}, from a
continuous two-step hybrid method with trigonometric coefficients.
Following (9) and (10), we obtain a system of six equations in ma-
trix form given by

T(v)y; = o5
where
1 0 1 0 0 0
cos (v) —sin(v) 1 =1 1 —1

o) = —v?cos (cv) —v?sin(cv) 0 0 2h* 6h3¢
—v?cos (cv) —v?sin(cv) 0 0 2h% 6hic, |’
—v?cos (c3v) —v?sin(czv) 0 0 2h* 6hics
—v?cos (cuv) —v?sin(cv) 0 0 2h* 6hicy

Vi = [A7 Ba ap, A1, a2, a?)]Ta
q>j = [yrw ynfb h’2fn+cla h2fn+c27 h2fn+c;3> h2fn+04]T

Theorem 2.2. Let 0 < ¢ < ¢y < -+ < ¢y <1, the matrixz function
T(v) is nonsingular.
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Proof:

We note that if determinant of matrix function 7'(v) is nonsingular
then v; can be uniquely determined by elementary algebra. From
row reduction, it is easily seen that

cos(crv) sin(cv) 1 ¢

o4 | cos(cov) sin(cv) 1 ¢
det(T(v)) = 12h°v™. cos(en) sinlew) 1 o (21)

cos(cyv) sin(cqv) 1 ¢y

which is a special case of results obtained in Coleman and Duxbury
[6]. Using the technique applied to the Vandermonde determinant

det(A(v)) =
(—sin (v — ¢3v) + sin (v — ¢4v) — sin (c3v — e4v)) 1
L9hPt + (sin (v — czv) — s?n (c1v — cqv) + s%n (c3v — c4v)) o
+ (sin (c1v — ¢4v) — sin (v — ¢4v) — sin (v — V)
+ (sin (v — c3v) + sin (c;v — ) + sin (v — c3v))

Suppose det(A(v)) = 0, we must have that ¢; = ¢x = ¢3 = ¢4 or
c1 = g = c3 = ¢4 = 0 which is a contradiction to our assumption
that 0 < ¢; < o < -+ < ¢4 < 1. Hence, for the respective con-
ditions ¢;, it follows that the determinant is nonzero. The proof is
complete.

For a speciﬁc Runge-Kutta-Nystrom formula with four abscissae
c; =101 35 2 1}. We shall obtain a block multistep methods which
shall in turn is transformed to the corresponding trigonometrically
fitted Runge-Kutta-Nystrom methods by some algebra. We shall
obtain three methods from (19) and two methods from (20) which
shall be additional methods to balance the over-determined system.

Hence, it is necessary to evaluate (19) at z = z,, $1 T = T2 and

& = Ty respectively. Thus the discrete form of (19) are obtamed
on evaluation of y(anr%), y(anr%) and y(z,1) respectively as

Ynyl = %Z/n - %ynq + B* (bi fo + b12fn+% + b13fn+§ +b1afni1)
Yny2 = %yn - %%—1 + h? (boy fr + 522fn+% + bz3fn+§ + bos frg1 ),

Ynt1 = 2Un — Yn—1 + h? <b31fn + b32fn+% + b33fn+§ + b34fn+1) )
(22)
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where
b ( ) -9 cos(% ) 18—8v2—9 cos( )+36 cos(%v)
v =
1 —27 v2427 cos(§ v)v2
_ 67 581 18100, 4 15161 6 , ...
=51~ 11580 V" Tos33720 Y~ ZH0305600 ¢ T
18 cos( )+9 cos(v)+18+16 cos(% v)v2+18 cos(% v)763 cos(% U)+5 v?
ap (U) = o072 1.Y,,2
27 v2 427 cos(3 v)v
_ 833 0 3581 4 144071 .6 . ..
< - + 9720 1574640 Gy 3968092800 Chtiy
b ( ) —10 cos(% U) -9 cos( ) 18 cos(v)+18—9 cos(% U)+18 cos(% U)—8U2
v =
13 —27v2427 cos(g )U2
_ 26 _ T ot 52T 6 4
=97 135 v®+ 34020 37556200 U T
b ( ) 9cos( ) 184512 +9 cos(v)
v
14 —27 v2427 cos(g v)v2
02— 2197 4 1541 6 ...
. = 162 + 5832 5832 33067420 U T 2380855680 U T
(23)
b ( ) —36 cos(% ) 18—35v%2—36 cos(% )+9O cos(%v)
v =
21 —54v24-54 cos( )
539 929 20689 4 24257 .6 , .
=21 TV toarsn ¥V~ moam Ut
b ( ) 72 cos( )+36 cos(v)—36+70 cos( v)v +72 cos(% 'v)7144 cos(% v)+20 v?
v
22 —54 02454 cos(§ v)v2
137 _ 619 .4 6403 .6 | ...
+ 276 216 136080 Gy 88179840 Chtiay
1 2 2 4 1 2
b (U) _ —40 cos(§ U)’U —36 cos(g v)—72 cos(v)+126—36 cos(g v)+18 cos(§ U)—35U
23 —El02 1,)2
54 v 454 cos(3 U)U
_ 209 403 55733 .4 60709 .6 ,
=308 — s V" T moua060 V' — Teermsrimo U+
bos(v) = 36 cos( 3 v)—72+20v2+36 cos(v)
v
24 —54v24-54 cos(§ v)vz
_ v2 — 2197 _ 4 1541 64 ...
L + 2916 To533720 U 1 Tiooaorsao VU T
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and
( o 4003(%11)—2 cos(%v)—Q cos(%v)—?v2
631 (U) - 2 cos(% v)v272 v2
_ 5 2 149 4 1123
— 2 360 + 5360 ¥ 20995200 vl
b 4 cos( )+4 cos(3 ) 2—-8 cos( )Jrv +4 cos(% v)v2+2 cos(v)
32 (U) 2 cos(% v)v2 202
2 619 6403
=77 + mv — 5or20 V"t sarseeae U T
b 42 cos(% v)72 cos(g ) 202 -2 cos( v)v +4 cos(% U)74 cos(v)
33(1}) - 2 cos(%v)v2 —202
_ 4 527
=3~ 55v" + 151 0" — greemme 0+
~ v242 cos(v)—2
b34(v) T2 cos(%v)vQ—Qv2
_ 571 6
(=1t ~ oo V' T s O T

(25)

To obtain an additional method to make up the block method,
we similarly obtain the discrete form of (20) by evaluation of at

T = Tpy1 to get

hyn = yp+ h? <b41fn + b42fn+% + b43fn+§ + b44fn+1)

with

QSiH(% ) v COS

by (v) = (3v)+2sin(3v)-v

1
3
2
5“)*

2w cos

L 2 _ 31 C.
+ 1440 + 181410 vt + 587865600 v’ +

( ) _ UCOS(%’U)‘F’UCOS(%U)*Q sin(%v)fZ sin(%v)

b42 v 2UCOS(%’0)72U

1 .2 1 4 31 6
181440 Y 537865600 U

v COS +wv cos é 2 sin g —2 sin %v
b43(v)_ ( ) 25003)(3 ) 51} ) ( )

1,2 14 3L 6 4 ...

—3_ 1 2 _1 ,4_ _ 3l
8 v 181440 v 587865600

2 sin(% U) UCOS( )+2 sm(3 U)—’U
2vcos(3 ) —2v

b44 (U) =

1 _ 31 .6 .
L + 1440 v* + 5 181440 vt + 537865600 U T

(26)

(27)
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It is instructive to note here that the system is over-determined
by inclusion of the back value y,_;. Hence, we generate another
method, which is added to the initial block to make the system
self-starting. So, evaluating (20) at x = x,, that is y/(x,), we
perform some algebra to obtain

Y1 = Yo = W+ 12 (Bsfu+ bsaFoy + bz + bsafurn)

(28)
with
(b . 2 sin(% U)—3 sin(% v)v —2 sm( )+2Ucos(§ )
51 (U) - —4 sin(% 'v)’v2+2 sm(§ v)v2
__ 287 403 2977 4 346067 6
=156~ 3360 V"t somm00 V" — Gaagsaneon Ut
—4sm( )—|—3 sm( )v + 2 sin( )v + 2 sm(%v)
b - —4vcos( )+4sm( )—2sin(3 )—QUCOS( )
52 (U) o —4 sm(é v)v2+2 sin(% v)v2
_ 433 2 1031 4349
= 720 + 1680 V° — 51200 V" T 30076800 U+
4sin(3 ) 3sm( )v2—231n( v)v —QSin(%v)
b - +4vcos (2v) —4sin (3 v) + 2 sin (2v) +2vcos ()
53(’0) - —4 sm(% 'v)v2+2 sm( v)v2
__ 117 523 1147 4 4945
=0 30V 300 Y — s Ut
b - —2 sm( )+2 sm( v)v2+2 sin(% v)72vcos(% v)
54 (U) —4 sm(é v)’v2+2 sin(% v)v2
_ 23 29 443 6
. __%+_U _1134000 + Zooara00 U T ( )
29

Remark 2.1. We remark here that asv — 0, these coefficients lead
to heavy cancellations which may affect numerical results, hence the
Taylor series equivalent are used for problems involving very small
frequency [29]. We also remark that the coefficients of the RKNCM

reduce to a corresponding classical two-step block multistep method
as v — 0.
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2.4. Corresponding Runge-Kutta-Nystrom Formula. Substi-
tuting (28) in (23), (24), (25) and (27), the corresponding trigono-
metrically fitted Runge-Kutta-Nystrom method takes the form

Uni1 = Yn + Yy + 20 bif (@ + ¢h,Y)),

Yni1 =Yn +h Z?=1 b f (@ + ¢;h, Y5),

Y = yo + cjhyl, + W3Sy aif(xn + cxh, Vi), j=1,2,--

which is represented in a Butcher’s array given as

0 0 0 0 0

5| a2 (v) axn(v) az(v) au(v)

31 as(v) an(v) a(v) au(v)

U an®) an@®) as®) )
bi(v)  ba(v)  b3(v)  bs(v)
bi(v)  ba(v)  ba(v)  b(v)

with coefficients
anl0) = 2 ey

_ 97 107 2 629 4
3240 + 816480 vt 661348800 Chay 523788249600

202 sin (% v) — 108 sin (% v) + 5 sin (% v) 02
+18 v cos (% v) + 36 v cos (% v) + 54 sin (% v

3

—2 sin (2 v) v® + 54 sin (3 v) — 507 sin (3 v)
—36 v cos (l v) — 18 v cos (% v) + 54 sin (% v)

—b4 sin(% v) +202 sin(% U)+18’UCOS(% U)

4633 6 4 .

a v) =
22( ) 54 sin(% v)v27108 v2 sin(% v)
19 20 .o 187 4 80,64
T 540 136080 110224800 87298041600

3
Qo3 (V) =
23( ) 54 sin(% U)’U2—108 2 sin(% v)
_ 13 1 2 _ 1 4 19 6 ..
= —10s0 T 30240 V" ~ 2721600 Y — 277iseeao0 U T

asy (V) =
24( ) 54 sin(%v)v27108v2 sin(%v)

1 1.2 109 4 257 6 . .
. =105 T 20012 V" 1 Tosasr200 ¥ T 32736765600 U T

4,
(30)

(31)
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o —80v? sm( )+27 sm( )718vcos(%v)
CL31(U) - 27 s1n(3v)112 54v25in(%v)

22 19 6, ...
+ 10333575 vt 1023023025 ¥V T

< 2v%sin (3 v) — 54 sin (2 v) + 8 sin (£ v) v* >

= M + 25515”

_\ +18vcos (5v) +36vcos (5v) — 54 sin (5 v)
&32(0) - 27 sin(%v)v2—54v2 sm(%v)
22 1 2 1 4 13 6
= 135~ Teo0 V" 3ao200 Y Gozseaoo U T
(32)
—2 sin (% )v2—|—108 sin( ) — 8v%sin (év)
B —36vcos(é )—18vcos( )+27sm(§v)
CL33(U) o 27 s1n(§ v)v2754v2 sm(é v)
_ 1 4 1 6
= 135 T 505 V" ~ Toosso0 ¥ — Troadeso ¥ T
—b4 sm( )+2U sm( )+18vcos(é )
CL34(U) o 27 sin (%U)U2 —54v2 sm(év)
_ 2 1 2 109 257 6
(. = 105 T 70206 ¥ T 52663600 V' T O
- —v? sm( )+2 sm(%v)—f—Q sm( ) 2Ucos(§ )
&41(’0) - bl(v) —4 02 sm(% )+2 sm( v)v2
__ 13 1 1 4 61
= 356 T 2016 V" + 300100 V" T+ 358807200 ¥ T
- - —6 sin(% v)+sin(2 v)v +2vcos( )+4vcos(% U)76 sin(% v)
CL42(U) - bQ(U) - —4 02 sm( )+2 sm( v)vz
_ 3 1 2 1 4 13
=10 " 1260 Y T 226800 Y T 404157600 VOt

6 sin( % v)—v?sin(1 4vcos( 2vcos +6 sin( 2
an(v) = o) = L _(va)sm( )(fé s?rl(3y)v2( e enl)

_ 3 1 .2 1 o4 19
=10 T To0s0 V" ~ gov200 Y~ 923788800 00+

) = ul) = 248 ini DETTenna

1 1.2 79 6 . ...
=6 T sm? T 453600 vt + 3233260800 U T

(33)
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and

(— 2 sin(%v)—vcos(%v)-i—Q sin(%v)—v
bl(v) - 2vcos(§v)—2v

_ 1 1 .2 1 4, 31 .64 ..
=3 T 1V T 181420 V" T 557865600 Y T g

- . vcos(%v)—l—vcos(%v)—Q sin(%v)—? sin(%v)

bQ(U) - 2vcos(%v)72v
3 1 2 1 4 31 6
8 " Ta0 Y T Tsa0 ¥ T msmeeseo0 U T
2 1 s (2 .01 s (34)
E - vcos(§ v)+vcos(§ v)72 sm(§ U)72 sm(g 'v)
3(U) B 2vcos(%v)72v
_ 3 1 2 1 4 31 6
=5 " 1wV " Tsa0 ¥V " sEmeseo0 Y T
54(1)) _ 2 sin(% v)fvcos(% U)+2 sin(% v)fv

2vcos(§ U)—QU

1 1 .2 1 4, 31 .64 ..
=3 T 12V T 181420 V" T 557865600 Y T g

3. STABILITY ANALYSIS OF THE METHOD

3.1. Interval of Periodicity, P-Stability and Stability Region. In
the literature, Van der Houwen et al. [17], Coleman [5] and Coleman
and Ixaru [7], the stability analysis of numerical integrators for periodic
solutions have been discussed extensively. In what follows, we apply
their stability theory for the numerical integrator (RKNCM) derived in
section 2.

A trigonometrically fitted Runge-Kutta-Nystrém method (30) may be
written in compact form (see Refs [17])
Yn+1 = Yn + hy' + h?b(v) ey + ch,Y),
Y1 =y, + hb(v)Tf(ex, + ch,Y), . (35)
Y = ey, + chy), + h2A(v)f(ex, + ch,Y),
The collocation parameters are the elements of the 4-dimensional vector

c, the coefficients of the method form the matrix b(v) and b(v) and the
4 x 4 matrix A(v), e is the 4-dimensional vectors with unit entries.
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If we apply (35) to the test equation y”” = —\2y, and substitute z = Ah,
(35) takes the form

< f;:l ) =M (zZ;v)< }f’;‘n > (36)

and

2 v [ 1=2*b()T(IT+22A(w))re 1—2*b()T(I+22A(v)) !
M(2%v) = < —2?b(0)T(I + 22A(w)) e 11— 22b(v)T(I + 22A(v)) "

(37)
The characteristic equation of (37) takes the form
& — 2Ry (2%, 0)E+1=0 (38)
and has the stability function
1+ 612’2 + 622’4 + 6326
Ry (2%0) = 39
(Z ’U) 1 + d12’2 + d22’4 + d326 ( )
with
—144 v sin (2 v) + 90t sin( ) 4 261 v* sin ( v)
—972 sin (v) v? — 4860 v? sin (5 v) + 3888 sin (3 v) v?
o = ,
! —972v* sin (v) — 4860 v* sin (3 v) + 3888 v sin (£ v)
—972 sin (v) — 36 v* s1n( v) + 14403 cos (% v)
—4v*sin (v) — 900 sin (3 )v 4860 sm(g v) + 7203
+3888 sin (% v) — 180 cos (g ) v° 4+ 1368 v* sin (% v)
+144 sin (v) v? + 18v* sin (3 v) — 36 v® cos (v)
oy = ,
? —972 vt sin (v) — 4860 vt sin (L v) + 3888 v sin (2 )
180 v cos (% v) 846 sin (3 ) + 612 sin (% )
—12631n(v)+36v sin (3 )—I—36vcos( ) + 4 sin (v) v?
—18 sin (3 v) v* — 72v — 403 — 144 v cos (3 v)
Cc3 =

v
—972v4 sin (v) — 4860 v4 sin (1 v) + 3888 vt sin (2 v) ’
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—7776 sin(3 v) v? + 9720 v% sin (1 v) — 18 v sin (v)
—522v%sin (3 v) + 1944 sin (v) v* + 288 v* sin (% v)
—972 v sin (v) — 4860 v* sin

)

—972 sin (v) — 36 vt sin (% % )

+144 sin (v) v? — 4v*sin (v 900 sin (% v) v*

+3888 sin (% v) — 180 cos (3 v) v + 1368 v? sin (é v)
—36v° cos (v) — 4860 sin (5 v) + 72v% + 18 v* sin (2 v)

d pum—
? —972v* sin (v) — 4860 v* sin (§ v) + 3888 v sin (3 v) '

(3v) + 3888 v4sin (20)
)+144v cos(

) —

1

3

180 v cos 23 ) 846 sin (% v) -+ 612 sin (2 v)

—18 sin (5 v) v* — 126 sin (v) + 36 v* sin é v)

P +36v cos (v) + 4 sin (v) v? — 72v — 40% — 144 v cos (3 v)
o —972v4 sin (v) — 4860 v* sin (3 v) + 3888 v sin (2 v)

Definition 3.1. [5]. Given A and w such that z = Ah and v = wh, the
primary interval of periodicity of a method is the largest interval (0, 3?)
such that |Rym(2%0)] < 1 for 0 < 22 < 3% If |[Rpm(22%50)| < 1 for all
22 > 0, the method is P-stable. If, when 3 is finite, |Rum(2%v)| < 1
for v2 < 2% < 6%, where v > (32, then the interval (v2,62%) is a second
interval of periodicity.

Definition 3.2. [6]. A region of stability is a region in the z — v plane,
throughout which | Ry, (2%;v)] < 1.

The z — v plot for the Runge-Kutta-Nystrom method for s = 4 is pre-
sented in Figure 1.

T
10
=z

FIGURE 1. z — v plot for the Runge-Kutta-Nystrom
collocation method
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Remark 3.1 (Remark on Stability). : We remark here that the
trigonometrically fitted Runge-Kutta-Nystrom method is not P-stable;
this is because the interval of periodicity (0, 3%) is finite for | Rym(22;v)| <
1. The primary interval of periodicity for |Rpm(2%;v)| < 1 asv — 0 is
z € (0,3.13%), while the secondary interval of periodicity is (3.13%,6.002).

3.2. Phase and Amplification Errors. Ozawa [26] stated that nu-
merical method with trigonometric fitting may be satisfactory for peri-
odic problems even if an inexact value of w is used. However, it is often
required that high accuracies in the phase or amplitude of the solution
are sought for. In this section, we shall investigate the phase and am-
plification errors, when inexact values of w is used to obtain numerical
solution.

For any method having the stability function (39), the quantity ¢(z?;v)
defined by

¢(z%0) = z — cos™ (Rum(2%;0)) (40)
is called the dispersion (or phase error or phase lag). Modifications from
Coleman and Duxbury [6] leads to the following:

Definition 3.3. [6] If ¢(2%v) = v(r)z7"2 + O(27"4) as v — 0, with
v =rz and y(r) # 0, then the method is said to be dispersive of order q.

In what follows, we investigate this quantity for the Runge-Kutta-Nystrom
collocation method.

Using R, in (40) and substituting v = rz, we obtain ¢(z%;v) given by

1 1
—cos~ ! (R (2%:0)) = = 2,6 8 — 0 (41
z—cos ™ (Rum(2%;v)) <12960 5060" >Z +0(z%), v—0 (41)

Thus we have proved the following theorem:

Theorem 3.1. The Runge-Kutta-Nystrom collocation method with the
coefficients evaluated at w is dispersive of order 4.

Remark 3.2. For problems, where v = z, there is no phase lag. In this
case, ¢(z%;v) = 0.

4. LOCAL TRUNCATION ERROR AND ORDER OF THE METHOD

We now establish the principal local truncation error of the RKNCM.
Let the local truncation errors at z,, be denoted as L™ [y(z,,); h] and

Lo y(zp); h], when y(z) is the theoretical solution of the problem.
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Definition 4.1. [26]. The order of accuracy of the Runge-Kutta- Nystrom
method is defined to be p = min{py,p2} for the integer p; and py satis-

Jying

LU y(xn)ih] = y(2ps1) = ynpr = O(WPHY) (42)
‘Ctyvnﬂ[?/(xn); h =y (znt1) — y7/'7,+1 = O(hp2+1) (43)

where Y1 and y,, | are the numerical solution given by the initial values
Yn = y(xn) and y;, = y'(zn).

Using Definition 4.1, we expand (42) and (43) respectively using the
RKNCM (30) with the Taylor series expansion (see Ref. [20]).

Lo y(zn)ih] = y(@npr) = | yn + by’ + B2 ZS: bjf(xn + cjh, Yj)
j=1
= ot (V@) + w2y () (44)
LU y(a)ih] = o (@asr) — |+ h izf(xn +¢;h,Y;
j=1
= o (1) + Py () (45)

Using the results (44) and (45), we can safely assert that the method is
of order 4.

5. NUMERICAL EXAMPLES

In this section, the numerical performance of the RKNCM is compared
with some numerical methods for periodic initial value problems. We
apply it to some linear and nonlinear problems with periodic solutions
that have appeared at different times in the literature. The RKNCM
is implemented using constant step-size in all the numerical examples.
The criteria for comparison are accuracy versus number of function eval-
uations (NFCN). All computations were carried out by codes using the
Maple solvers. We also note that our method is implemented in a block
fashion to reduce the number of function evaluations, see Refs. [18].

Problem 5.1: Simos [29]
We consider the nonlinear Duffing equation previously solved in [[4], [6],
[19], [29]] for various intervals. The equation is given by

y' +y+y* = Bcoswa, y(0)=Coh,  9(0)=0.  (46)
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This equation has an analytical solution which takes the form
y(z) = C1 coswx + Cy cos 3wz + C5 cos bwx + Cy cos Twz.

where w = 1.01, B = 0.002, Cy = 0.200426728069, C; = 0.200179477536,
Cy = 0.246946143 x 1073, C3 = 0.304016 x 1079, Cy = 0.374 x 107,

Numerical results of the end-point global errors for the RKNCM is com-
pared with numerical results obtained for some fourth-order methods in
[4], [6] for 0 < x < 407, while numerical results are compared with the
results in Jator et al. [19] for 0 < z < 300. We use similar acronyms
for results in Jator et al. [19] and Coleman and Duxbury [6] and our
numerical results are passed respectively in Tables 1 and 2.

G2- Fourth-Order mixed collocation method [6]

E3- Fourth-Order mixed collocation method [6]

S1- exponentially-fitted Fourth order method [6]

PE3- Fourth-order polynomial collocation method [6]

PG2- Fourth-order polynomial collocation method [6]

C4- Two-step polynomial based hybrid method Chawla et al. [6]
Chawla- Two-step fourth-order P-stable method [4]

Simos- Exponentially fitted Runge-Kutta-Nystrém method [29]
Ixaru- Exponentially fitted method [19]

TABLE 1. Problem 5.1: Maximum errors on [0,40 7]

Method | h = h =15 . 10
G2 8.7E-6 | 4.8E-7 | 2.9E-8 | 1.8E-9

E3 1.1E-5 | 5.8E-7 | 3.0E-8 | 2.1E-9
S1 0.4E-5 | 2.6E-6 | 1.4E-7 | 8.7TE-9
PE3 1.4E-3 | 8.7E-5 | 5.5E-6 | 3.4E-7
PG2 7.2E-4 | 4.6E-5 | 2.9E-6 | 1.8E-7
C4 3.8E-3 | 2.0E-4 | 1.2E-5 | 7.1E-7
Chawla | 4.5E-3 | 2.9E-4 | 1.8E-5 | 1.1E-6
RKNCM | 1.2E-6 | 8.0E-8 | 5.0E-9 | 3.2E-10

Remark 5.1. From Tables 1 and 2, it is easily observed that our meth-
ods outperformed the other methods. Numerical results for G2, E3, S1,
PE3, PG2, CJ are passed from Coleman and Duzbury [6].

Problem 5.2: Nonlinear Strehmel-Weiner Problem [23]



158

J. O. EHIGIE, S. N. JATOR AND S. A. OKUNUGA

TABLE 2. Problem 5.1: Maximum errors on [0,300]

TBNM

Simos

Ixaru

RKNCM

0.125
0.0625

1 1.31 x 1073

0.5
0.25

7.53 x 107°
2.47 x 1076
1.34 x 1077
8.10 x 107

1.70 x 1073
1.88 x 10~*
1.37 x 1075
8.70 x 1077
5.41 x 1078

1.10 x 1073
4.42 x 107
1.86 x 1076
6.19 x 10°8
2.40 x 107

3.96 x 107©
4.97 x 1077
3.22 x 1078
7.05 x 10710
1.28 x 10710

TABLE 3. Problem 5.2: Numerical results with w =4

RKNCM

TBNM [19]

TIRK3 [23]

RADAU5 [15]

NFCN

Err

NFCN

Err

NFCN

Err

NFCN

Err

600

1200
1500

1.9x10°°
1.2 x 1077
55 x 1078

602
1202
1602

21x1071
1.3 x 107°
4.1 x107°

907
1288
1682

25x 1071
6.6 x 1076
7.0x 1076

853
1208
1639

22x1071
4.4 x 107*
6.0 x 1076

The nonlinear Strehmel-Weiner problem given by

y" = (y — 2)3 + 6368y — 63842 + 42 cos 10z y(0) = 0.5,9/(0) =0
2 = —(y — 2)3 4+ 12768y — 12784z + 42cos 10z z(0) = 0.5,2'(0) =0
0<2<10

(47)

% is also considered.

with an exact solution y(z) = z(z) = cos 4z —

We numerically solved (47) with the RKNCM and compared with the
Three Stage Trigonometrically Fitted Method [23] (TIRK3), RADAU5
method in Hairer and Wanner [15] and the Trigonometrically Fitted
Block Numerov type method (TBNM) [19]. The computational effi-
ciency is measured by the end-point global error with respect to the
number of function evaluations (NFCN) used. Details of numerical re-
sults are passed in Table 3.

Remark 5.2. It is seen from Table 3 that the RKNCM yields the most
accurate result on implementation in comparison with the methods TBNM
[19], TIRK3 23] and computations by the RADAUS5 code in [15] in terms
of accuracy. The table further shows that our method is the most effi-
cient because it has the least number of function evaluations with respect
to the maximum error obtained.

Problem 5.3: The wave equation Franco [12]
Lastly, we consider a problem representing a vibrating string with speed
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w given by the partial differential equation

Pu (1 —a)2% + (W —2u=0 0<z<l, 0<t<5
u(0,t) =0, u(1,t) =0, u(z,0) = z(1 — x), ug(2,0) =0
(48)
where the initial and Dirichlet boundary conditions have been chosen
such that the solution is given by u(z,t) = x(1—x) cos wt. Equation (48)
is transformed by semi-discretization on the spatial variable by using the
second-order central difference scheme with parameter Ax = 2—10. the
systems of ODE of the form
d*U
72 +kU=0 (49)
is obtained, where U denotes the 19-dimensional vector with entries
(u1,usg, -+ ,uig) and K a (positive definite) stiffness matrix with 19 dif-
ferent eigenvalues in the range [61,223]. Numerical computations with
w = b for te,g = 5 have been compared to the methods My (ﬁ, 5—16) given
in Franco [12], My (555,0) developed in Chawla and Rao [3], Method
M,y (0,0), developed in Chawla [2] and with the highly sophisticated
LSODE code for initial value problem as implemented in Hindmarsh
[16]. Figure 2 presents the norm error at ¢t = 5 in logarithmic scale
against computational efficiency of the methods in terms of function
evaluations (NFCN).

Logl0(Error) o

-124

FIGURE 2. Problem 5.3: Graph of Log10(Error) ver-
sus Computational Cost (NFCN)
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Remark 5.3. It is seen from Figure 2, that new RKNCM is more ef-
ficient than the other methods with reduced function evaluation with re-
spect to the accumulated error at t = 5.

6. CONCLUSION

Another procedure for deriving trigonometrically fitted Runge-Kutta-
Nystrom method have been introduced using a multistep collocation
technique. A practical four-stage RKNCM method was obtained from
a class of discrete methods derived from a continuous two-step multi-
step scheme of Numerov type. Some properties of the methods were
investigated. A detailed analysis of the method reveals that the new
method is dispersive of order 4 and the stability plot of the method
was presented. The implementation of our RKNCM on periodic initial
value problems is applied in a block fashion to some linear and nonlinear
initial value problems with periodic solutions. Numerical results were
presented in terms of accuracy versus number of function evaluations. In
the experiments, our new method yields numerical solution with fewer
function evaluations, which implies that numerical results are obtained
with fewer number of steps for periodic initial value problems, hence it
is highly efficient. The method reduces to its classical counterpart when
the frequency used in the fitting process is set to zero.
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